Амперметр в цепи

Всем нам известно, что амперметр – это прибор для измерения тока, который измеряется в Амперах. Меряет амперы – значит, амперметр.

Но, для того, чтобы замерить ток, необходимо амперметр правильно подключить в цепь. Будь то цепь постоянного или переменного тока. Ведь неправильное включение прибора может привести к выходу его из строя.

Содержание

Амперметр подключается к электрической цепи последовательно

То есть у нас есть провод, по нему течет электрический ток от источника этого самого тока к потребителю, которым может выступать электрический прибор.

Чтобы измерить ток амперметром, нам необходимо обесточить (отключить) источник питания. Затем необходимо разорвать цепь – в прямом и переносном смысле. Грубо говоря, разрезать провод.

Теперь у нас получится два провода. Берем амперметр, подключаем к прибору две половины разрезанного провода. Нужно учесть тот факт, что ток, протекающий в цепи должен быть меньше максимально измеряемого тока прибора. Максимально измеряемый ток прибора должен быть написан на самом приборе или в документации к нему.

Максимальный ток в цепи можно рассчитать, зная напряжение, нагрузку и сечение провода. Провода должны быть изолированы (покрыты изоляцией), а на концах зачищены.

После того, как провода подключены и надежно закреплены в амперметре, можно включать питание и прибор покажет величину тока в цепи, который и пройдет через амперметр.

Но так никто не делает, потому что разрезанные провода до добра не доводят.

У амперметра малое внутреннее сопротивление, это сделано для того, чтобы оно минимально влияло на величину измеряемого тока. При подключении амперметра в цепь переменного тока не имеет значения, куда подключать прибор.

При подключении амперметра в цепь постоянного тока, если стрелка будет отклоняться в другую сторону, или же будет показывать ноль – следует поменять полярность, поменять провода местами.

Подключение амперметра через шунт

Если ток в цепи окажется больше, чем ток прибора, то можно рассчитать и использовать шунт для измерения тока большей величины. В этом случае цепь разделится на две ветви. У одной будет малое сопротивление амперметра, а у второй большое сопротивление подобранного шунта. Большой ток разделится пропорционально сопротивлениям и по амперметру пройдет малый ток, по шунту – большой. (Более подробно об этом явлении).

Измерение тока амперметром через трансформатор тока или клещи

Бывают случаи, когда надо замерить ток в кабеле, на шине… изолированной шине. Шина – это медная полоса определенного сечения, по которой протекает ток, не автомобильное колесо…

Разрезать кабель или шину бывает накладно, да и бессмысленно. В этом случае можно воспользоваться измерительными клещами или трансформатором тока.

Трансформатор тока имеет две обмотки – высшую и низшую, которые не связаны между собой. Ток приходит на высшую, затем создается ЭДС (более подробно про принцип действия ТТ) и во вторичной обмотке протекает ток, пропорциональный числу витков обмоток. Так вот, если есть необходимость замерить ток, то на кабель вешают «бублик», он же – ТТ. А уже к трансформатору тока присоединяют амперметр. Тут главное правильно быть проинструктированным и не наделать дел. Получается мы снимаем ток амперметром со вторичной обмотки, преобразованный в меньшую сторону и безопасный для измерения и амперметра.

Такой же принцип используется и в измерительных клещах, только и амперметр и ТТ находятся в одном корпусе. Да и плюс ко всему первичная обмотка клещей размыкается одним нажатием кнопки на корпусе и потом замыкается.

Эти два описанных решения гораздо удобнее, чем разрезать провод и садить к амперметру. Главное следить за диапазонами измеряемых приборами и протекаемых в электрических цепях токов.

Мультиметры позволяют измерять постоянный ток до 10 Ампер. Но их часто палят, так как неправильно подключают концы на прибор, не учитывают величину тока в проводах… Но это в основном молодые люди. Часто для «починки» такой неисправности необходимо просто заменить предохранитель в приборе.

Ну, и в конце хотелось бы еще раз повторить основную мысль всего повествования:

Сохраните в закладки или поделитесь с друзьями

Самое популярное

Нажми, чтобы увеличить

На сайте info-kotlas.ru есть все схемы электрооборудования автомобилей Камаз. Но они нуждаются в дополнении по распиновке комбинации приборов 28.3801. На рисунке представлена наглядная схема всех соединений. Осталось лишь дать к ней небольшие пояснения.

Оранжевый разъём:

1. фиолетовый провод уходит на датчик температуры двигателя ТМ 111;

2.жёлтый сдвоенный провод подключен одним проводом к датчику аварийной температуры ТМ 100, а вторым подключается к разделительному диоду;

3.не задействован;

4.подключен к датчику аварийного давления масла;

5.подключен к предохранителю защищающему цепь подсветки приборов и габаритных огней (левая сторона);

6.Положительный вывод вольтметра. Питание поступает при включении «массы»;

Белый разъём:

1.подключается к датчику давления масла ММ 370;

2.сдвоенный белый провод подключается к «массе»(в случае плохого контакта или полного его отсутствия панель приборов будет давать ложные показания, стрелки могут дергаться или приборы не будут работать);

3.не задействован;

4.контрольная лампа низкого уровня топлива;

5.питание комбинации приборов. появляется при включении зажигания;

6.указатель уровня топлива;

Для подключения амперметра к автомобилю необходимо подобрать прибор подходящей модели и выбрать наиболее подходящий способ установки. Амперметр может показывать автовладельцу гораздо больше сведений, чем вольтметр. А потому есть смысл задаться целью подключить такой прибор. В данном материале довольно подробно рассказано, как установить и полноценно эксплуатировать амперметр в машине.

Предназначение амперметра

Ещё на старых советских автомобилях устанавливалось некое подобие амперметра, но оно было менее функциональным и информативным, нежели современные модели. Такое устройство работало только «в одну сторону” и показывало направление тока, то есть, к АКБ или из нее. Иными словами, такой прибор лишь давал информацию, заряжается АКБ или разряжается в данный момент времени.

Современные модели в случае правильного подключения предоставляют гораздо больше полезной информации автолюбителю. Это стало возможным благодаря тому, что амперметры стали цифровыми, соответственно, могут считывать не только направление электрического тока, но и другие сведения. Они показывают нагрузку с достаточно высокой точностью, что значительно повышает их функциональность.

В целом, амперметр в автомобиле позволяет контролировать следующие характеристики бортовой сети:

  • Прогресс заряда АКБ. Этот показатель зависит от следующих факторов: уровень заряда АКБ, температурные условия, тип движения и так далее.
  • Разряд АКБ. Потребление тока изменяется в зависимости от внешних факторов. Знание этой информации позволяет приблизительно оценить время автономной работы и текущее состояние аккумулятора.
  • Состояние генератора. Работоспособность во время движения, прогресс зарядки АКБ.
  • Оценка текущей мощности генератора. Амперметр показывает, хватает ли мощности для удовлетворения текущей нагрузки. Особенно важна эта характеристика, если на автомобиле установлена дополнительная техника, потребляющая электроэнергию, например, мощная акустическая система, инвертор 12-220V.
  • Показатели потребления тока. Это позволяет понять, какой ток расходуется всеми потребителями в текущий момент времени.
  • Реальная мощность оборудования. По амперметру без труда можно вычислить уровень потребления каждого прибора. Зная напряжение легко вычислить текущую мощность, время автономной работы и другие интересные данные.
  • Зависимость между текущей нагрузкой и потреблением. Амперметр позволяет узнать, насколько сильно меняется уровень потребления при использовании того или иного оборудования. Так, например, можно выяснить, достаточно ли получает энергии АКБ во время работы двигателя.

Выше перечислены только наиболее важные функциональные возможности амперметра. Продвинутые модели предоставляют информацию еще о нескольких десятках ключевых характеристик автомобиля.

Теоретическая справка

Данный раздел предназначен для тех, кто не имеет должного представления о том, как работает амперметр. Далее будет представлена теоретическая информация об устройстве этого прибора, которая позволит лучше уяснить дальнейший материал. Если вы хорошо ориентируетесь в теме, можете пропустить этот раздел и сразу начать читать следующий.

Автомобильный амперметр состоит из двух элементов:

  • Токовый шунт — небольшой проводник с фиксированным сопротивлением, которое получается путем подбора материала и сечения. Для калибровки шунта на нем делаются пропилы, благодаря чему увеличивается сопротивление.
  • Сам прибор — по сути (да и конструктивно тоже), это простой вольтметр, откалиброванный под определенный шунт.

Амперметр, вопреки всеобщему заблуждению, определяет именно вольты (а не амперы). Сила тока определяется самим прибором, за счет подобранной особым образом шкалы (или алгоритма в случае с цифровыми моделями).

Работает прибор так. Шунт ставится в разрыв провода, по которому требуется сделать измерения. В шунте есть небольшое сопротивление (сотые доли ома), следовательно, напряжение немного снижается (пропорционально установленному сопротивлению). На разных концах провода получается разное напряжение. Благодаря этой разности и знанию сопротивления шунта, амперметр «подсчитывает” текущую силу тока (по закону Ома). Полученные значения выводятся на экран устройства с точностью до десятых, или даже сотых долей ампера.

В теории вычислить силу тока в конкретной цепи можно и без использования амперметра. Сделать это можно следующим образом:

  • Обесточить сеть и выяснить сопротивление проводника на измеряемом участке (измеряется в Омах).
  • Подключить ток и измерить падение напряжения на концах исследуемого участка.
  • Вычислить силу тока с помощью закона Ома, то есть, напряжение разделить на сопротивление провода.

Однако описанный метод, во-первых, неудобный, а во-вторых, точность измерений будет минимальна. Сопротивление в большинстве случаев ничтожно мало и простые приборы (вроде обычного мультиметра) не дают необходимой точности. Специальные автомобильные амперметры в сотни раз более чувствительны, поэтому с высокой точностью измеряют даже малейшую разность напряжения.

Советы по выбору амперметра для автомобиля

Во многих магазинах можно найти китайские амперметры ценой в 200-400 рублей — такие приборы для использования в автомобиле не годятся. Они рассчитаны на небольшие токи и моментально сломаются при подключении в сеть автомобиля. Поэтому необходимо приобретать специально предназначенные для установки в бортовую сеть автомобиля приборы. В них шунты представляют собой толстые пластины из манганина (и других материалов, не меняющих свое сопротивление при нагреве), благодаря чему способны выдерживать солидные токи.

Рассмотрим основные критерии, по которым необходимо выбирать амперметр:

  • Предел измерений силы тока. Необходимо, чтобы прибор мог измерять ток до 100 ампер. Если этот предел ниже, то такое устройство не подходит для использования в автомобиле. В то же время приобретать модель, рассчитанную на огромную силу тока (300 и более ампер) не имеет смысла. При увеличении максимальной нагрузки сильно снижается точность.
  • Предельный ток шунта. В большинстве случаев производителями шунты подбираются под конкретную модель амперметра, а также на определенный максимальный ток.
  • Направление измерения. От этого зависит оптимальный способ подключения (о них будет рассказано ниже). Для подсоединения методом АКБ-генератор оптимальный вариант — односторонняя модель. Для других способов следует приобрести более продвинутую модель, позволяющую измерять ток в любом направлении.
  • Полярность прибора. Недорогие модели обычно подключаются на плюсовой, или на минусовой провод. Поэтому при выборе необходимо учитывать предполагаемый способ подключения. Альтернативный вариант – купить модель, которая позволяет подключаться к проводу любой полярности.
  • Точность измерений. От этого показателя, в первую очередь, зависит стоимость амперметра. Однако для большинства автолюбителей точность до сотых долей ампера не нужна. Поэтому нет смысла переплачивать за повышенную точность.

Методы подключения автомобильного амперметра

Всего есть три основных варианта подключения амперметра к автомобилю. У каждого из них есть свои технические особенности, которые очень желательно знать заранее. Есть и менее популярные методы подключения амперметра, но они либо слишком сложные, либо результат не стоит затраченных усилий. Выбор оптимального способа подключения зависит от используемого прибора и поставленных задач.

Генератор-АКБ

Для реализации данного метода подойдет самый простой односторонний амперметр с плюсовой полярностью. При использовании такой схемы подсоединения мы получаем возможность контролировать ток, который поступает от генератора в АКБ и для питания приборов бортового компьютера. Однако вычислить показатели разряда (т.е. при неработающем моторе) невозможно.

Подключение происходит по следующей схеме:

  1. Провод, подключенный на плюсовую клемму аккумулятора, отключается.
  2. Получится разрыв сети, в который подключается шунт с учетом полярности (об этом обязательно должно быть сказано в инструкции к прибору).
  3. К выходам шунта подсоединяются измерительные провода амперметра (как правило, они имеют небольшое сечение).
  4. Для питания самого прибора к нему подводится бортовое напряжение 12В.
  5. При необходимости такой разрыв можно создать около самого аккумулятора.

Важно! Созданный узел необходимо тщательно заизолировать, чтобы не допустить короткого замыкания в сети.

АКБ-потребители

Данная методика подключения значительно сложнее предыдущей, однако более функциональна, и позволяет получить больше сведений о текущей обстановке. Для реализации данного способа желательно иметь амперметр, работающий в обоих направлениях. В таком случае устройство позволит анализировать ток, который потребляют установленные в автомобили электроприборы. Шунт для такого способа также должен быть подходящим, то есть, предназначенным для установки к плюсовой клемме. Схема подключения выглядит следующим образом:

  1. От плюсовой клеммы аккумулятора отсоединяются все провода, за исключением кабеля, который подключен к стартеру.
  2. В этот разрыв подсоединяется шунт. Важно учитывать полярность и соблюдать маркировку (об этом будет написано в инструкции к прибору).
  3. К шунту подсоединяются провода от амперметра.
  4. Амперметр подключается к бортовой сети.
  5. Провода изолируются во избежание короткого замыкания.

Необходимость использования двухстороннего амперметра при такой схеме подключения обусловлена тем, что односторонний прибор будет показывать только ток, используемый электроприборами. Двухсторонние модели показывают более полную информацию о сети. Поэтому описанный метод подключения является наиболее популярным.

Подключение амперметра на минусовую клемму

Такая методика подключения актуальна только в том случае, если имеющийся в наличии амперметр предназначен для подключения к минусовой клемме. Во всех остальных ситуациях рационально использовать один из перечисленных выше способов. Это связано с тем, что подключение к минусовой клемме скрывает в себе ряд неудобств:

  • При запуске двигателя (это необходимо для измерений) есть вероятность выхода из строя амперметра.
  • В большинстве случаев минус к амперметру подключается несколькими проводами.
  • Для работы амперметра к нему необходимо подключить отдельное питание.
  • Если вы точно уверены, что это единственный возможный метод, действуйте по следующему алгоритму:
  • Отключается питание от минусовой клеммы аккумулятора.
  • В разрыв устанавливается шунт. Параллельно нему подключается специальный размыкатель (идет в комплекте с амперметром).
  • К слаботочным клеммам подключаются провода от амперметра.
  • С помощью DC-DC интерфейса с гальванической развязкой подключается питание амперметра.
  • Перед запуском двигателя изолируются созданная сеть.

Если в комплекте поставки размыкателя не оказалось, его можно заменить выключателем массы с отдельной кнопкой. Преобразователь не всегда входит в комплект, поэтому его точно придется докупать. Настоятельно не рекомендуем пользоваться дешевыми китайскими аналогами, в таком случае высока вероятность выхода из строя прибора. Необходимо иметь преобразователь, который точно выдержит имеющееся напряжение.

Альтернативный вариант измерения ампер в автомобиле

Рассмотрим еще один способ подключения амперметра к автомобилю. Он не требует встраивания прибора в сеть автомобиля, следовательно, проще. Однако и задачи, которые с помощью этого способа можно решить — весьма скромны. Понадобится для этого мультиметр и токовые клещи. Чтобы измерить, например, ток утечки, необходимо сделать следующее:

  1. Заглушить двигатель и выключить всё электрооборудование (акустика, бортовой компьютер и так далее).
  2. Включить мультиметр в режим амперметра.
  3. Установить предел силы тока в 10 ампер.
  4. Вставить плюсовой щуп в соответствующий интерфейс на устройстве.
  5. Снять одну из клемм с аккумулятора и в полученный разрыв цепи подключить мультиметр в режиме амперметра.

В таком режиме прибор покажет ток, который потребляет сеть при выключенных основных потребителях. Измерить можно также потребление некоторых приборов, например, центрального замка, магнитолы, навигатора. Следует только помнить, что мощность измеряемого потребителя при использовании обычного мультиметра не должна превышать 100 Вт, иначе прибор попросту перегорит.

Важно! Во время проведения измерений тока описанным способом ни в коем случае нельзя пытаться запустить двигатель. Ток, который пойдет через мультиметр при работе стартера (более 100 А), неминуемо устроит эффектное шоу, после чего прибор можно будет уже и не восстановить. Для измерения тока стартера можно использовать только хорошие токоизмерительные клещи.

Схожий материал

Как подготовить машину к зиме

Запах бензина в салоне автомобиля: 10 причин и методика их поиска

Полировка машины своими руками: проверенные способы

Почему плохо крутит стартер: диагностика и ремонт своими руками

7 причин повышенного расхода масла в двигателе и как его правильно рассчитать

Как не уснуть за рулем — проверенные рекомендации и мифы

Дым из выхлопной трубы бензинового двигателя: причины и последствия

Плюсы и минусы бензинового двигателя с подробными пояснениями

В амперметрах ток, проходящий по прибору, создает вращающий момент, вызывающий отклонение его подвижной части на угол, зависящий от этого тока. По этому углу отклонения определяют величину тока амперметра.

Для того, чтобы амперметром измерить ток в каком-то приемнике энергии, необходимо амперметр соединить последовательно с приемником с тем, чтобы ток приемника и амперметра был один и тот же. Сопротивление амперметра должно быть мало по сравнению с сопротивлением приемника энергии, последовательно с которым он включен, с тем, чтобы его включение практически не влияло на величину тока приемника (на режим работы цепи). Таким образом, сопротивление амперметра должно быть малым и тем меньшим, чем больше его номинальный ток. Например, при номинальном токе 5 А сопротивление амперметра составляет r а= (0,008 — 0,4) ом. При малом сопротивлении амперметра мала и мощность потерь в нем.

Рис. 1. Схема включения амперметра и вольтметра

При номинальном токе амперметра 5 А мощность потерь P а = I а 2 r = (0,2 — 10) Ва . Напряжение, приложенное к зажимам вольтметра вызывает в его цепи ток. При постоянном ток зависит только от напряжения, т.е. Iv = F(Uv ). Этот ток, проходя но вольтметру, так же как и в амперметре, вызывает отклонение его подвижной части на угол, зависящий от тока. Та ким образом, каждому значению напряжения на зажимах вольтметр будут соответствовать вполне определенные значения тока и угла поворота подвижной части .

Для того чтобы по показанию вольтметра определить напряжение на зажимах приемника энергии или генератора, необходимо его зажимы соединить с зажимами вольтметра так, чтобы напряжение на приемнике (генераторе) было равно напряжению на вольтметре (рис. 1).

Сопротивление вольтметра должно быть большим по сравнению с сопротивлением приемника энергии (или генератора) с тем, чтобы его включение не влияло на измеряемое напряжение (на режим работы цепи).

Пример. К зажимам цепи с двумя последовательно соединительными приемниками (рис. 2), имеющими сопротивления

r1 = 2000 ом и r2 = 1000 ом , приложено напряжение U =120 В.

Рис. 2. Схема включения вольтметра

При этом на первом приемнике напряжение

U1 =80 В, а на втором U 2=40 В.

Если параллельно первому приемнику включить вольтметр с сопротивлением

rv= 2000 ом для измерения напряжения на его зажимах, то напряжение как на первом, так и на втором приемниках будет иметь значение U » 1 = U » 2 =60 В.

Таким образом, включение вольтметра вызвало изменение напряжения на первом приемнике с

U1= 80 В до U » 1 = 60 В , т. е. погрешность в измерении напряжения, обусловленная включением вольтметра равна ((60 В — 80 В)/80 В) х 100% = -25%

Таким образом, сопротивление вольтметра должно быть большим и тем большим, чем больше его номинальное напряжение. При номинальном напряжении 100 В сопротивление вольтметра

rv = (2000 — 50000) ом. Вследствие большого сопротивления вольтметра мала мощность потерь в нем .

При номинальном напряжении вольтметра 100 В мощность потерь Р

v = (Uv 2 /rv ) Ва.

Из изложенного следует, что амперметр и вольтметр могут иметь измерительные механизмы одинакового устройства, отличающиеся только своими параметрами. Но амперметр и вольтметр различным образом включаются в измеряемую цепь и имеют разные внутренние (измерительные) схемы.

Измерение тока. Приборы, предназначенные для измерения тока, получили название амперметров. Приборы, рассмотренные в гл. 9, могут служить как для измерения тока, так и для измерения напряжения. При этом отличаются способы включения их в электрическую цепь и значения сопротивления измерительной цепи прибора. Амперметр включают в цепь таким образом, чтобы через него проходил весь измеряемый ток, т. е. последовательно. Сопротивление амперметра должно быть малым, чтобы в нем не происходило заметного падения напряжения.

Для измерения постоянного тока используют преимущественно амперметры магнитоэлектрической системы и реже приборы электромагнитной системы, а для измерения переменного тока частотой 50 Гц в основном применяют амперметры электромагнитной системы.

Непосредственное включение амперметра в цепь измеряемого тока не всегда возможно, так как в некоторых случаях измеряемый ток во много раз превосходит необходимый для полного отклонения подвижной системы прибора. В этихслучаях при измерении постоянного тока параллельно амперметру включают шунт, через который проходит большая часть измеряемого тока (рис. 10.1).

Согласно первому закону Кирхгофа, максимальное значение измеряемого амперметром тока при наличии шунта

где I max — максимальное значение тока в цепи; I Aн — номинальное (предельное) значение тока амперметра в отсутствие шунта; I ш — ток, проходящий через шунт. Так как амперметр и шунт включены параллельно, то токи между шунтом и амперметром распределяются обратно пропорционально их сопротивлениям:

откуда находим сопротивления шунта:

где r A — внутреннее сопротивление амперметра; n = I max /I Aн — коэффициент, показывающий, во сколько раз расширяются пределы измерения.

Так как то ток в цепи при заданной нагрузке

где I A — показание амперметра. Если шкалу амперметра отградуировать с учетом шунта, то можно определять значение измеряемого тока I непосредственно по показаниям прибора.

При измерении переменных токов шунты не применяют. Это объясняется тем, что распределение токов между шунтом и амперметром определяется не только их активным сопротивлением, но и реактивным сопротивлением прибора, которое зависит от частоты. Поэтому для расширения пределов измерения амперметров в цепях переменного тока используют измерительные трансформаторы тока.

Измерение напряжения. Электроизмерительные приборы, предназначенные для измерения напряжения, называются вольтметрами. Вольтметры включают параллельно участку (элементу) электрической цепи, на котором измеряют напряжение. При этом вольтметр должен иметь очень большое сопротивление по сравнению с сопротивлением элемента цепи, на котором измеряется напряжение. Это необходимо для уменьшения погрешности измерения и для того, чтобы не было изменения режима работы цепи. В самом деле, чем больше сопротивление вольтметра, тем меньший ток проходит через него и тем меньше расходуется в нем энергия, а следовательно, тем меньшее влияние оказывает включение прибора на режим работы цепи.

Для расширения пределов измерений вольтметров в цепях постоянного тока с напряжением до 1000-4500 В служат добавочные резисторы, включаемые последовательно с прибором (рис. 10.2). В цепях переменного тока напряжением свыше 1000 В для расширения пределов измерений используют измерительные трансформаторы напряжения.

При включении последовательно с вольтметром добавочного резистора сопротивление последнего определяют из следующих соображений: допустим, вольтметром с сопротивлением r V , рассчитанным на номинальное напряжение U ном , необходимо измерить напряжение U xmax , которое в n раз больше U ном . В этом случае необходимо соблюдать условие, при котором ток, проходящий через вольтметр, был бы одинаковым при обоих напряжениях, т. е.

(10.3)

и фактически измеряемое напряжение

где U V — показание вольтметра.

Шкалу вольтметров в большинстве случаев градуируют с учетом добавочного сопротивления r д . При этом вольтметр может быть выполнен на несколько пределов измерения, для чего он снабжается несколькими добавочными сопротивлениями и соответствующим переключателем шкалы на лицевой стороне прибора.

Для измерения напряжения в цепях постоянного тока применяют магнитоэлектрические вольтметры, а в цепях переменного тока — электромагнитные и электродинамические вольтметры. При измерении малых переменных напряжений используют выпрямительные и электронные милливольтметры, причем при повышенных частотах преимущественно электронные.

Вас интересует, как можно измерить силу тока электричества и какой прибор для этого использовать? Постараемся ответить на эти вопросы максимально подробно. Итак, с целью измерения силы тока всегда использовался прибор, который называют амперметр. В любом проводнике, по которому течет ток, с помощью этого прибора можно измерить его силу. Характеризуется такая сила количеством электронов, проходящих в проводнике за определённую единицу времени. Конечно, все электроны невозможно замерить — их миллиарды. Поэтому и придумали единицу, которая измеряет силу тока – ампер. Именно в этом значении и отображает свои показания амперметр. Кроме замера ампер, амперметр может определять и другие значения, такие как мкА – микроампер, и мА – миллиампер. Но в двух последних случаях такое устройство будет носить немного другое название – миллиамперметр и микроамперметр. В статье мы затронем только один прибор, который используется для замера ампер.

Устройства для определения силы тока могут быть аналоговыми и цифровыми. Среди аналоговых моделей применяется в основном 4 типа приборов:

  • Магнитоэлектрический
  • Электромагнитный
  • Электродинамический
  • Ферродинамический

Есть и другие типы, но эти наиболее интересны, так как применяются чаще всего. Каждый работает по своему принципу. Рассмотрим их более подробно.

Магнитоэлектрический прибор

Принцип работы устройства основан на взаимодействии катушки подвижного типа и магнитного поля постоянного магнита, расположенных внутри корпуса.

1 — корректор; 2 — противодействующие пружины; 3 — подвижная катушка; 4 — полюсные наконечники; 5 — стрелка; 6 — сердечник

К достоинствам прибора относится малое потребление мощности во время работы и хорошая измерительная чувствительность с низким коэффициентом отклонений. Также стоит отметить, что все электромагнитные амперметры имеют равномерную шкалу отображения необходимой характеристики. Поэтому можно сделать ровные замеры силы тока с максимальной точностью.

Лабораторная версия магнитоэлектрического амперметра

Из минусов прибора отмечается его сложное устройство, а именно наличие подвижной катушки. К тому же он работает исключительно от постоянного тока, так что это устройство нельзя назвать универсальным. Но несмотря на такие недостатки, магнитоэлектрический прибор пользуется большой популярностью и часто используется в самых разных сферах: как в лабораториях, так и на крупных предприятиях.

Электромагнитный прибор

Это приспособление не имеет подвижной катушки, как у предыдущего вида. Его устройство очень простое. В нем расположен специальный механизм и сердечники. Но сердечник может быть всего один. Сердечники устанавливаются на ось.

Электромагнитный прибор обладает меньшим диапазоном чувствительности, в отличии от магнитоэлектрической модели. Соответственно, точность его замеров ниже. Но у него есть и преимущества, а именно работа как при переменном, так и при постоянном токе, поэтому им очень легко пользоваться.

Электродинамические амперметры

Принцип работы этих моделей основан на взаимодействии полей тока, протекающих по магнитным катушкам. В приборе имеется как подвижная, так и неподвижная катушки. Это основное его преимущество – универсальность.

Недостаток прибора в том, что он слишком чувствителен, поэтому улавливает любые магнитные поля, находящиеся в радиусе его работы. Такие поля могут создавать достаточно сильные помехи, поэтому прибор необходимо использовать только в экранированных зонах.

Ферродинамические амперметры

Этот амперметр является самым точным и эффективным. Сторонние магнитные поля на него практически не оказывают никакого влияния. Соответственно, он не нуждается в дополнительном экранировании. Устройство этого надежного и прочного приспособления состоит из ферримагнитного замкнутого провода. Также в нем расположены неподвижная катушка и сердечник. Такая схема позволяет получить максимально надежные показатели. Именно поэтому ферродинамический амперметр часто применяется в государственных оборонных учреждениях. Им легко пользоваться, он удобен, а главное — все получаемые им показатели наиболее точны, в отличие от предыдущих разновидностей.

Амперметры данного типа предназначены для профессиональных высокоточных измерений

Цифровые модели

Кроме аналоговых амперметров, описанных выше, есть и другая разновидность, впитавшая в себя все современные технологии – цифровые амперметры. Сегодня они завоевывают все больше популярности. Это связано с тем, что подобное приспособление крайне удобно в работе, им легко пользоваться, к тому же прибор имеет небольшие размеры и выдает точные показания. Плюс ко всему — он очень мало весит. Цифровой прибор можно применять в самых разнообразных условиях, он не боится ни тряски, ни вибрации. Механический прибор с такими условиями не справится и не даст точных показаний, в отличие от цифрового.

Стоит отметить, что цифровые модели устойчивы к ударам, поэтому с ними можно работать в непосредственной близи с различными механизмами без страха повреждения прибора. В отличие от механических моделей, его можно использовать в горизонтальном и вертикальном положениях. С помощью цифрового циферблата можно следить за изменениями всех величин с максимально допустимой точностью и с минимальными погрешностями. На такой прибор не оказывают влияние ни атмосферные, ни температурные давления, что позволяет использовать его в условиях улицы.

Подключение амперметра

Чтобы снять точные замеры силы тока, прибор надо правильно подключить. Нужно правильно выбрать шунт: он должен быть немного ниже замеряемого тока. Для его крепления к амперметру используются расположенные на нем специальные гайки. Также обязательно надо отключить подачу тока на устройство.

Амперметр всегда подключается в цепь последовательно

Когда электронный или аналоговый прибор будет подключен в цепь с шунтом, важно проверить правильность полярностей. Это один из самых важных моментов. Только после этого подключается питание обесточенного прибора и проводятся замеры. Прибор, в зависимости от своего типа, показывает разные данные, и их точность напрямую зависит от того, по какому принципу работает амперметр.

Где применяются?

Механические и цифровые амперметры могут применяться в разных сферах. На предприятиях по производству тепловой или электрической энергии они получили широчайшее распространение. Кроме этого, их активно применяют различные лаборатории. Такой прибор находит применение и в:

  • автомобилестроении
  • строительстве
  • точных науках

Но не только крупные организации используют данный прибор: он популярен и среди обычных людей. Практически любой опытный автолюбитель имеет подобное устройство для замеров показателей энергоснабжения своего транспорта.

Правила безопасности

Категорически запрещено подключать амперметр в сеть электропитания без подачи нагрузки на него. Если это правило не соблюдать, то прибор просто сгорит. Нельзя касаться оголенных проводов руками и другими частями тела во время замеров силы тока. Иначе можно получить электрический удар. Следует быть крайне внимательным и осторожным при работе с таким приспособлением, особенно с аналоговыми разновидностями.

Как правильно выбрать нужный прибор?

Прежде нужно определиться, что именно требуется от прибора. Если нужна маленькая погрешность во время замеров, то следует приобретать модель с сопротивлением около 0-0,5 Ом. Желательно, чтобы все контактные зажимы были покрыты антикоррозийным покрытием так же, как и другие элементы устройства.

Вид корпуса тоже имеет значение. Если он ровный и герметичный, то прибор будет работать без погрешностей, в него не попадет влага и не испортит его. Все это гарантирует максимальную долговечность и точность устройства.

Как должен храниться прибор?

Требования для хранения устройств для замера силы тока достаточно высоки, и чем точнее его измерительные способности, тем выше требования. От их соблюдения зависит срок службы и точность замеров. Поэтому важно поддерживать указанную в паспорте влажность и температуру в помещении, где хранится амперметр. Если он аналоговый, то недопустимы никакие механические воздействия, тряска, удары, падения. В случае с электрическими моделями все это незначительно. Рекомендуется каждые полгода проверять прибор в органах Госстандарта. И, конечно, самое важное – ознакомиться с правилами его эксплуатации и соблюдать их.

Для измерения силы постоянного или переменного электрического тока используются амперметры. Графическое обозначение этого прибора на электрических схемах — круг с размещенной внутри буквой «А». Это измерительное устройство определяет силу электрического тока в амперах, миллиамперах или микроамперах. Подключается амперметр последовательно в разрыв цепи.

Применение амперметров

Амперметры применяются в промышленности, в телекоммуникациях, лабораторных исследованиях и в других сферах деятельности для измерений постоянного или переменного электрического тока в диапазоне от единиц мкА до десятков кА. При этом величина измеряемого тока не должна превышать максимального значения шкалы прибора с учетом схемы подключения. В зависимости от предела измерений современные амперметры подразделяются на:

  • микроамперметры;
  • миллиамперметры;
  • амперметры;
  • килоамперметры.

Когда был изобретен амперметр?

Первые попытки измерения силы электротока были осуществлены в начале XIX века. В то время к проводнику, через который протекал электрический ток, подносили обычный компас. Судить о величине электротока позволяла величина угла отклонения магнитной стрелки.

Какие бывают амперметры?

В зависимости от типа амперметры делятся на устройства для измерения:

  • постоянного тока;
  • переменного тока.

Существуют следующие типы амперметров:

  • магнитоэлектрические — служат для измерения малых величин постоянного электрического тока;
  • электромагнитные — обеспечивают измерение переменного (частота 50 Гц) и постоянного тока;
  • электродинамические — выполняют измерение переменного (частота до 200 Гц) и постоянного тока;
  • термоэлектрические — предназначены для измерения величины переменного электрического тока высокой частоты;
  • ферродинамические — представляют собой самопишущие приборы и применяются в автоматических системах измерения.

В зависимости от вида используемой шкалы эти приборы бывают:

  • стрелочные;
  • электронные (цифровые).

Принцип действия амперметра

В основе работы различных типов амперметров лежат разные принципы действия. Используемые методы измерения электрического тока в основном зависят от сферы применения прибора.

Принцип действия магнитоэлектрического амперметра основан на том, что постоянное магнитное поле и протекающий через обмотки рамки электрический ток вызывают возникновение крутящего момента. Протекание электротока через прибор вызывает движение стрелки. Последняя непосредственно связана с рамкой. Поэтому угол поворота стрелки прямо пропорционален амплитуде измеряемого электрического тока.

Конструкция электродинамического амперметра включает в себя неподвижную и подвижную катушки. Для измерения токов малой величины они соединяются последовательно, большой величины — параллельно. Стрелка крепится к подвижной катушке и двигается в результате взаимодействия между токами, протекающими в неподвижной и подвижной катушке.

В основе конструкции термоэлектрического амперметра лежит магнитоэлектрическое устройство с контактным или бесконтактным преобразователем. Последний представляет собой проводник с приваренной к нему термопарой. Проходя по преобразователю, электроток вызывает его нагревание, которое регистрируется термопарой. Возникающее при этом термическое излучение воздействует на магнитоэлектрическое устройство. Его рамка отклоняется на пропорциональный значению протекающего электрического тока угол.

Работа цифрового амперметра основана на аналого-цифровом преобразовании амплитуды измеряемого тока. Проходя через аналогово-цифровой преобразователь (АЦП), сигнал квантуется по времени, а потом по уровню. Полученная информация преобразуется в цифровой вид и индицируется на табло.

Как рассчитать шунт для амперметра?

В случаях, когда требуется измерить электрический ток, превышающий максимальное значение шкалы амперметра, необходимо использовать шунт. Его сопротивление рассчитывается по следующей формуле:

Rш=(Rа*Iа)/(Iш-Iа)

При этом:

  • Rш — искомое сопротивление шунта (в Омах);
  • Rа — внутреннее сопротивление амперметра (в Омах);
  • Iа — максимальная величина тока, измеряемая амперметром (в Амперах);
  • Iш — ориентировочная величина измеряемого тока (в Амперах).

Внутреннее сопротивление амперметра

Для корректной работы величина внутреннего сопротивления амперметра должна быть на порядок меньше значения сопротивления цепи. В некоторых случаях такая информация отсутствует. Тогда следует измерить внутреннее сопротивление используемого амперметра. Для этого к источнику питания последовательно подключаются нагрузочное сопротивление и амперметр, а параллельно последнему включается чувствительный вольтметр. После включения схемы снимаются показания приборов. Величина внутреннего сопротивления амперметра определяется, как отношение показаний чувствительного вольтметра и амперметра.

Амперметрами называются приборы для измерения силы тока, величины тока. Данные приборы всегда включаются последовательно в цепь, измерение тока в которой требуется произвести. Амперметры, в отличие от вольтметров, обладают при включении в цепь чрезвычайно малым сопротивлением, чтобы процесс измерения минимально влиял бы на показания. Итак, амперметры служат для измерения величин токов.

При измерении значительных токов, через рабочую катушку прибора протекал бы недопустимо большой ток, что потребовало бы усложнять конструкцию, по этой причине, для возможности безопасного измерения больших токов прибегают к шунтированию рабочей катушки прибора, чтобы через саму катушку протекал не весть измеряемый ток, а только малая его часть. То есть измеряемый постоянный ток разделяют на ток шунта и ток рабочей катушки измерительного прибора, при этом шунт пропускает через себя почти весь ток измеряемой цепи.

Шунт подбирают таким образом, чтобы соотношение токов в нем и в рабочей катушке получалось 10 к 1, 100 к 1 или 1000 к 1, то есть соотношением сопротивлений шунта и измерительной цепи добиваются приемлемого режима работы измерительного прибора. Амперметры для измерения небольших токов градуируются в миллиамперах, и называются миллиамперметрами, также есть и микроамперметры.

Если нужно измерить ток переменный, да еще и немалый, как это делают при помощи , то здесь в схему добавляется . Трансформатор тока имеет вторичную обмотку из множества витков, нагруженную резистором, а первичной обмоткой выступает один виток провода, просто пропущенного через окно сердечника трансформатора тока. По сути получается, что амперметр подключается ко вторичной обмотке токового трансформатора.

Когда изготавливают трансформатор тока для амперметра переменного тока, рассчитывают витки и резистор вторичной обмотки так, чтобы если измеряемый ток составляет 1000 ампер, то ток вторичной обмотки не превышал бы 0,5 ампер. Шкалу прибора градуируют на наибольший измеряемый ток, текущий в обмеряемом проводе, то есть на максимальный ток первичной обмотки токового трансформатора прибора.

Амперметр переменного тока никогда не включают в работу при разомкнутой вторичной обмотке токового трансформатора, поскольку в этом случае наведенная ЭДС попросту сожжет прибор, и амперметр станет опасным для персонала.

Применение в амперметрах трансформаторов тока позволяет безопасно проводить измерения в цепях высокого напряжения, поскольку вторичная обмотка, соединенная непосредственно с измерительным прибором, всегда надежно изолируется.

Часто корпус прибора для пущей безопасности заземляют, как и вторичную обмотку измерительного токового трансформатора, чтобы даже в случае пробоя изоляции между обмотками, персонал остался в безопасности.

Магнитоэлектрические амперметры используются только в цепях постоянного тока. В поле постоянного магнита перемещается катушка измерительного прибора, связанная со стрелкой. Магнитное поле катушки, по которой проходит ток, взаимодействует с магнитным полем постоянного магнита, и стрелка отклоняется на соответствующий угол в ту или иную сторону.

Если такой прибор включить в цепь переменного тока, и попытаться провести измерения, то ничего не выйдет, ведь стрелка просто будет колебаться с частотой тока возле нулевого положения, и прибор может сгореть.

Решается проблема применением схемы выпрямления. Выпрямительная система позволит измерить переменный ток частотой до 10кГц, при условии, что форма тока — синус.

Аналоговые амперметры по сей день не потеряли популярность. Им не нужно питание от батареек, измеряемая цепь дает им питание. Стрелка наглядно отображает показания. Но стрелочные приборы имеют недостаток — они довольно инертны.

Цифровые амперметры содержат аналого-цифровой преобразователь, и на отображаются просто готовые цифры, показывающие результат измерений. Цифровые приборы лишены инертности, обладают высокой частотой опроса схемы, и наиболее современные дорогие амперметры могут выдавать до 1000 результатов измерения за одну секунду. Минус один — нужен дополнительный источник питания такому прибору.

В завершении отметим, что если у вас нет под рукой амперметра для измерения переменного тока, но есть амперметр постоянного тока, а необходимо здесь и сейчас измерить переменный ток, то вам поможет схема выпрямления, которую просто добавляют в цепь, и при помощи обычного амперметра постоянного тока можно будет измерить переменный ток, без необходимости прибегать к использованию трансформатору тока.

Надеемся, что эта краткая статья помогла вам понять, чем отличается амперметр постоянного тока от амперметра переменного тока, и теперь вы сможете измерить даже переменный ток амперметром постоянного тока, без необходимости покупать токовые клещи. Конечно, для измерения больших токов токовые клещи незаменимы, однако в любительской практике порой необходимы простые и практичные решения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *