Микрофон направленный

Как сделать простой направленный стерео микрофон из всякого хлама?

Как сделать простой направленный стерео микрофон из всякого хлама?

Я уже описывал одну конструкцию микрофона, предназначенного для ЦФК, но его эксплуатация выявила ряд недостатков, о которых рассказано ниже. Поэтому я попытался изготовить более совершенную модель.

В результате, получилось два разных микрофона, один монофонический, а другой стереофонический.

Самые интересные ролики на Youtube

Близкие темы.

Самодельный микрофон для записи видеороликов на цифровую фотокамеру.

Как самому изготовить электретный микрофон для компьютера?

Простой микрофонный усилитель для компьютера своими руками.

Как припаять штекер к экранированному аудио кабелю.

Пролог.

Первый мой самодельный микрофон имел слишком неравномерную АЧХ из-за резонанса, возникающего в трубке. Кроме этого, он позволял записывать только монофонический звук. Было решено построить более совершенную модель микрофона, но как всегда обойтись без токарно-фрезерных работ.

В ходе размышлений пришло несколько идей по изготовлению трубки щелевого микрофона без использования станков, да и самой трубки.

Трубка щелевого микрофона из шайб.

Трубу щелевого микрофона можно изготовить из шайб большого диаметра. Если в каждой шайбе просверлить по два отверстия, то можно при помощи двух шпилек собрать многослойный сандвич, а размер щелей отрегулировать с помощью мелких шайб.

У этой идеи, на мой взгляд, есть только один существенный недостаток. Для того чтобы с достаточной точностью просверлить в каждой шайбе отверстия, пришлось бы изготовить небольшой кондуктор.

Трубка щелевого микрофона из транзисторных хомутов.

Если вместо шайб использовать хомуты от транзисторов старого типа, то сверлить и вовсе ничего не придётся. Останется только собрать трубку.

Недостаток трубы, собранной из стандартных хомутов от транзисторов типа П213… П217 – большой вес. Если же применить дюралюминиевые хомуты от транзисторов типа КТ801, то можно получить достаточно лёгкую трубку. Правда, в такой трубке будет сложно разместить сразу два микрофонных капсюля, поэтому для стерео мокрофона придётся искать другое решение.

Трубка щелевого микрофона из металлической ленты.

Трубку щелевого микрофона можно изготовить из узкой металлической ленты, если свернуть её в винтовую линию на шаблоне нужного диаметра. Тогда ширину щелей можно будет регулировать изменением шага винта.

На основе этих идей я изготовил два микрофона – монофонический и стереофонический.

В этот раз я опустил некоторые подробности, касающиеся сборки микрофонов и изготовления деталей, так как в одной из предыдущих статей их уже подробно освещал.

Щелевой микрофон из хомутов от транзисторов.

Это чертёж, по которому был изготовлен щелевой микрофон из транзисторных хомутов.

  1. Хомут от транзисторов – дюраль.
  2. Гайка – сталь, М2.
  3. Шайба-гровер – сталь, М2.
  4. Шпилька – сталь, М2.
  5. Капсюль электретного микрофона – Ø10х7мм.
  6. Прокладка – кембрик.
  7. Экранированный кабель – Ø2мм.
  8. Проходная втулка – резина Ø11мм.
  9. Винтовая спираль – припой Ø2мм.
  10. Корпус – шприц медицинский – 5гр.
  11. Задняя стенка – шприц медицинский – 5гр.

Собрать микрофон из хомутов от транзисторов оказалось проще простого. Вот, что было использовано для сборки.

  1. Шайба-гровер – сталь, М2.
  2. Кабель экранированный с разъёмом Джек 3,5мм.
  3. Винтовая спираль – припой Ø2мм.
  4. Втулка проходная – резина Ø11мм.
  5. Бархат.
  6. Капсюль электретного микрофона – Ø10х7мм.
  7. Хомут от транзисторов типа КТ801, КТ602, КТ604.
  8. Шприц медицинский – 5 гр.
  9. Шпилька, гайка – сталь, М2 (шпильки были изготовлены из велосипедной спицы).

Для того чтобы сделать внешний вид более презентабельным, я обтянул корпус микрофона, изготовленного из шприца, термоусадочной трубкой. Сначала усадил переднюю часть, а в конце сборки вставил крышку и усадил хвостовую часть.

Вот, что получилось.

Направленный щелевой стерео микрофон из металлической ленты.

Это чертёж, по которому был изготовлен направленный стерео микрофон из металлической ленты.

  1. Винт – М1,6х5.
  2. Гайка – М1,6.
  3. Хомут – сталь, S0,3мм. (жесть от консервной банки).
  4. Лента – сталь, S0,5х8х50мм.
  5. Капсюль электретного микрофона – Ø6х6мм.
  6. Винт – М1,6х5.
  7. Перегородка – шприц медицинский 20гр.
  8. Втулка проходная – резина Ø11мм.
  9. Груз – припой Ø2мм.
  10. Крпус – шприц медицинский 20гр.

Для этого микрофона понадобилось совсем мало деталей.

  1. Кабель экранированный моно – Ø2мм.
  2. Кабель экранированный стерео – Ø3мм.
  3. Винт – М1,6х5.
  4. Втулка проходная – резина Ø11мм.
  5. Хомут – сталь, S0,3мм. (из консервной банки).
  6. Винт, гайка, шайба – М1,6.
  7. Груз – припой Ø2мм.
  8. Капсюль электретного микрофона – Ø6х6мм.
  9. Шприц медицинский 20гр.
  10. Лента – сталь, S0,5х8х50мм.
  11. Термоусадочная трубка – Ø8мм.

Для того чтобы не заниматься покраской, я покрыл стальную ленту термоусадочной трубкой, а затем свернул в винтовую спираль поз.1 на корпусе 10-ти граммового шприца.

Из корпуса 20-ти граммового шприца я изготовил корпус микрофона поз.3, а перегородку поз.2 из поршня того же шприца.

На этом этапе можно просверлить три отверстия для крепления трубки к корпусу и нарезать резьбу.

Чтобы уменьшить длину неэкранированных проводов, идущих к микрофонным капсюлям, удлинил стерео шнур двумя небольшими отрезками моно шнура. На картинке видно, как это было сделано. В качестве изоляции применена плотная бумага.

Корпус микрофона, как и в предыдущей конструкции, был обтянут термоусадочной трубкой.

Ещё одна картинка, поясняющая порядок сборки.

Вот, что получилось.

to see this player.

А вот, как это работает.

Мелкие подробности.

При испытаниях первой пары микрофонных капсюлей выяснилось, что их АЧХ слишком сильно разнятся. В ожидании базарного дня, даже собрал небольшой стенд для проверки микрофонов без применения пайки. Купил ещё несколько капсюлей по 0,4$, чтобы было из чего выбирать. Но, первая же пара, взятая из этой покупки, оказалась согласованной по АЧХ. Больше я экспериментировать не стал.

21 Январь, 2012 (13:24) в Аудио — Видео, Бюджетная фотография, Сделай сам

Микрофоны классифицируются по признаку преобразования акустических колебаний в электрические и подразделяются на электродинамические, электромагнитные, электростатические (конденсаторные и электретные), угольные и пьезоэлектрические.

Микрофоны характеризуются следующими параметрами:

  1. Чувствительность микрофона—это отношение напряжения на выходе микрофона к воздействующему на него звуковому давлению при заданной частоте (как правило 1000 Гц), выраженное в милливольтах на паскаль (мВ/Па). Чем больше это значение, тем выше чувствительность микрофона.
  2. Номинальный диапазон рабочих частот—диапазон частот, в котором микрофон воспринимает акустические колебания и в котором нормируются его параметры .
  3. Неравномерность частотной характеристики—разность между максимальным и минимальным уровнем чувствительности микрофона в номинальном диапазоне частот.
  4. Модуль полного электрического сопротивления—нормированное значение выходного или внутреннего электрического сопротивления на частоте 1 кГц.
  5. Характеристика направленности—зависимость чувствительности микрофона (в свободном поле на определённой частоте) от угла между осью микрофона и направлением на источник звука.
  6. Уровень собственного шума микрофона—выраженное в децибелах отношение эффективного значения напряжения, обусловленного флуктуациями давления в окружающей среде и тепловыми шумами различных сопротивлений в электрической части микрофона, к напряжению, развиваемому микрофоном на нагрузке при давлении 1 Па при воздействии на микрофон полезного сигнала с эффективным давлением
    0,1 Па.

В телефонных аппаратах, в основном, применяются электродинамические, электретные и угольные микрофоны. Но, как правило, в 95% кнопочных ТА применяются электретные микрофоны, которые имеют повышенные электроакустические и технические характеристики:

  • широкий частотный диапазон;
  • малую неравномерность частотной характеристики;
  • низкие нелинейные и переходные искажения;
  • высокую чувствительность;
  • низкий уровень собственных шумов.

Рис 1.
Схема включения конденсаторного микрофона.

На рис. 1 приведена схема, объясняющая принцип работы конденсаторного микрофона. Выполненные из электропроводного материала мембрана (1) и электрод (2) разделены изолирующим кольцом (3) и представляют собой конденсатор. Жёстко натянутая мембрана под воздействием звукового давления совершает колебательные движения относительно неподвижного электрода. Конденсатор включен в электрическую цепь последовательно с источником напряжения постоянного тока GB и активным нагрузочным сопротивлением R. При колебаниях мембраны ёмкость конденсатора меняется с частотой воздействующего на мембрану звукового давления. В электрической цепи появляется переменный ток той же частоты и на нагрузочном сопротивлении возникает переменное напряжение, являющееся выходным сигналом микрофона.

Электретные микрофоны по принципу работы являются теми же конденсаторными, но постоянное напряжение в них обеспечивается зарядом электрета, тонким слоем нанесённого на мембрану и сохраняющим этот заряд продолжительное время (свыше 30 лет).

Поскольку электростатические микрофоны обладают высоким выходным сопротивлением, то для его уменьшения, как правило, в корпус микрофона встраивают истоко-вый повторитель на полевом n-каналыюм транзисторе с р-п переходом. Это позволяет снизить выходное сопротивление до величины не более 3 + 4 кОм и уменьшить потери сигнала при подключении к входу усилителя сигнала микрофона. На рис. 2 приведена внутренняя схема электретного микрофона с тремя выводами МКЭ-3.

Рис. 2
Внутренняя схема электретного микрофона МКЭ-3.

У электретных микрофонов с двумя выводами выход микрофона выполнен по схеме усилителя с открытым стоком.

Рис. 3.
Внутренняя схема электретного микрофона МКЭ-389-1.

Рис. 4.
Схема подключения электретных микрофонов с двумя выводами.

На рис. 3 приведена внутренняя схема электретного микрофона с двумя выводами
МКЭ-389-1. Схема подключения такого микрофона приведена на рис. 4. По этой схеме можно подключать практически все электретные микрофоны с двумя выводами, и отечественные и импортные.

В таблице приведены их технические характеристики.

Параметры микрофонов:

Отличие микрофона МКЭ-332 от МКЭ-333 в том, что МКЭ-332 односторонненаправленный, а МКЭ-333 ненаправленный.

Коэффициент гармоник на частоте 1000 Гц при звуковом давлении 3 Па для микрофонов МКЭ-377-1 и МКЭ-389-1 не более 4 %, МКЭ-378 не более 1 %.

Неравномерность частотной характеристики чувствительности в номинальном диапазоне частот для микрофона МКЭ-3 не более 12 дБ, а для М1-А2, М1-Б2, МЭК-1 и МКЭ-389-1 не более ±2 дБ.

Рис. 5.
Допусковая область частотной характеристики микрофона МКЭ-377-1.

Рис. 6.
Допусковая область частотной характеристики микрофона МКЭ-378.

Для разговоров в скайпе намного удобней пользоваться микрофоном, который не надо держать в руках или наклоняться, чтобы собеседник вас хорошо слышал. В этом видео-уроке расскажем, как изготовить внешний петличный стерео-микрофон своими руками.

Дешевые микрофоны в этом китайском магазине.

Нужные детали

Понадобится двухжильный армированный провод достаточной длины. В примере на видео его длина около 3 метров. Если микрофон будет фонить, то его нужно будет укоротить. Поскольку устройство будет петличным, понадобится прищепка. Кроме этого нужен мини-джек на 3,5 мм и два маленьких микрофона, которые могут быть удалены из старых сотовых телефонов или от простых стационарных телефонов.

Сначала нам нужно припаять провода к мини-джеку. Припаиваем толстую медную проволоку посередине и цветные по бокам. Нет никакой разницы с какой стороны и какого цвета.

После того, как провода припаяны, аккуратно собираем их и закручиваем.

Пайка проводов на микрофоны

На втором конце провода нужно зачистить и залудить. Тепрь нужно эти три провода припаять к микрофону. У него есть плюс и минус. Припаиваем любой, то есть красный или белый провод к любому плюсу от первого или второго микрофона. Поскольку минус общий, соединяем их между собой перемычкой у обоих микрофонов.

Остается изготовить корпус для микрофонов. Как самый простой вариант можно просто залить их термоклеем и покрасить в нужный цвет. Приделываем прищепку и петличный микрофон готов. Кстати, если не нужен стереомикрофон, то можно ограничиться одним без потери качества. А если у сделанного выше устройства развести микрофоны, то эффект стереозвука будет намного выше.

Проведен тест петличек.

Исходник
От Dart.
Представляю сканы из книжки А. Нисбетта «Применение микрофонов». Издана ©London-New York, 1974. Автор книги профессиональный звукооператор с радио ВВС. Представленный фрагмент книги полностью отвечает тематике портала, и запросам местного электората 🙂 . Я сам руководствовался этими данными при изготовлении двух типов дальнобойных микрофонов вначале 90-х. И за каждый вывод автора готов подписаться самолично, все обстоит именно так. Очень правильно описаны глюки этих микрофонов, советую прочитать тем, кто верит в сказки про километровые расстояния. От себя лично могу добавить фоты работающих конструкций, и образцы аудиофайлов, с электретныго капсюля без электронной предобработки но это в форуме.
p.s. Сканы потому, что в рунете эта книжка отсутствует или глубоко зарыта, найти не смог. Прошу не пинать за «заметки на полях» сделаные в юности, времени не было стирать.
Остронаправленные микрофоны
Существуют два способа получения особенно острых характеристик направленности. Один состоит в том, чтобы сфокусировать звуковую волну, исходящую из интересующую нас области пространства, в точке где установлен микрофон. Фокусировка даёт усиление нужного звука по сравнению с прочими, мешающим нам источниками, излучающими звук по другим направлениям. Второй способ состоит в том, чтобы звук, приходящий сбоку, автоматически самоуничтожался прежде чем успеет дойти до микрофона. Усиление полезного сигнала здесь не происходит, однако уменьшается уровень звукового давления посторонних источников. Оба способа применимы лишь до тех длинн волн, которые не больше максимальных размеров конструкции, обеспечивающей модификацию звукового поля.
Фокусировка звука
Обычно звук фокусируют с помощью параболического рефлектора, который делают из стеклопластика или металла. Рефлектор диаметром 1м может примерно на 20 дБ усилить сигналы удалённых источников, расположенных на его оси. Для очень слабых источников это позволяет значительно уменьшить сигнал/шум (причём прежде всего уменьшить влияние собственных шумов микрофона и услителя). Угол приёма высоких частот очень мал, всего несколько градусов. Всё же достоинства микрофона такой конструкции весьма ограничены: удобный в работе рефлектор диаметром около метра теряет способность фокусировать звуки ниже 1 кГц. А на нижних частотах характеристика направленности остронаправленного микрофона ничем не отличается от характеристики направленности самого микрофона. Неспособна такая конструкция устранить и близко расположенные источники помех, хотя если характер помех преимущественно низкочастотный, здесь может помочь обрезной фильтр.
Рефлекторы успешно применяют для записи звуков, издаваемых дикими зверями и певчими птицами. Поскольку с неменьшим успехом релекторы работают не только под открытым небом но и в студии с их помощью записывали удалённые звуки (например, звуки шагов танцора или шуршание одежды балерины), которые придают особую эффективность многим выступлениям актёров или танцоров при показе их по телевидению или кино. Всё же солидные по себе размеры рефлектора не позволяют применять его в тех многочисленных случаях, когда желаемого результата можно добиться обычным способом.

Фазовый сдвиг
В первых моделях остронаправленных микрофонов использующих сдвиг по фазе для выделения требуемого сигнала на фоне шумов и помех, применялась конструкция в виде пучка трубок разной длины, которые принимали волновой фронт на разных расстояниях от плоскости мембраны. Посторнний сигнал, приходивший под углом к акустической оси микрофона, проходил в трубках разные по длинне пути. Когда различные части одного и того же волнового фронта складывались наконец у мембраны микрофона, то фаза некоторых из них так изменилась в силу дополнительной разности хода, что в целом они сводили на нет, ту часть которая прошла более короткий путь.
Впоследствии было обнаружено что одна трубка с соответствующим набором отверстий в ней функцианирует не хуже пучка трубок; по принципу такой «Линейной группы» работает и сверхостронаправленный микрофон, называемый иногда «Микрофонной пушкой».

Микрофонная пушка
Принцип работы интерференционной трубки только что был описан: главное, чтобы различные чати одной и той же волны, приходящей к микрофону сбоку оказались в противофазе. Такой метод обладает двумя существенными недостатками. Первый присущ всем остронаправленным микрофонам: при колебаниях, длинна волны которых больше габаритов конструкции, характеристика направленности становиться такой же, как характеристика направленности применяемого в них капсюля. У микрофонной «пушки» с интерференционной трубкой длинной около 40 см угол раскрытия характеристики направленности для частот выше 1500 Гц составляет 50-60*. Однако на 250 Гц характеристика направленности в значительной мере близка к кардиоде (т.е. к характеристике направленности капсюля без фазоздвигающей трубки). Поэтому микрофонная пушка воспринимает такие шумы, как грохот городского транспорта, спектр которого находится в основном в области нижних частот. Правда эту помеху можно несколько ослабить, включив после микрофона обрезной фильтр. Если «пушку» использовать при записи звуковых эффектов — например при синхронной съемке исполнителя чечеётки — или при передаче по телевидению звуков, сопровождающих спортивные состязания (это придаёт передаче дополнительное ощущущение сопричастности происходящему), то, как правило, лучше применить обрезной фильтр с частотой среза порядка 300 Гц.
Влияние реверберации
Второй недостаток «пушки» состоит в том, что она не обладает острой характеристикой направленности для диффузных ревербирирующих отзвуков. Это объясняется тем, что отражённый звук попадает в микрофон по самым произвольным путям, поэтому и явление взаимного уничтожения волны из-за поворота фазы не возникает. В гулком помещении можно ожидать, что у хорошего кардиоидного микрофона будет такая же характеристика, как и у «пушки», а качество воспроизведения полезного сигнала — даже лучше, чем у неё. Акустические условия в теле- или киностулии могут быть вполне приемлимыми для микрофонной «пушки» (с точки зрения времени реверберации), однако и здесь её надо применять только тогда, когда говорящий постоянно находится лицом к ней: так что её можно применять для передачи бесед, но никак для трансляции спектаклей.
Когда «пушку» используют на открытом воздухе, обязательно нужна ветрозащищающая насадка. Это как правило, очень громоздкая конструкция, поэтому и звукооператор и кинооператор должны тщательно следить за тем, что бы она не попала в кадр (дело в том, что нередко звук лучше всего принимать в точке, находящейся непосредственно за кадром). Ветрозащита не нужна, если микрофонная «пушка» укреплена на студийной микрофонной стойке,-правда при этом микрофон нельзя быстро передвигать. Это хорошо ещё и потому, что ветрозащитный чехол может отбрасывать тень даже при неярком общем освещении.
Выделение голоса в толпе
Микрофонную пушку специально применяют для выделения одного говорящего в большой группе людей, например зрителей в телестудии, причём для этой группы поставлен отдельный кардиоидный микрофон, а микрофонная «пушка» добавляет эффект присутствия для того, кто выступает в данный момент. В целом более приятные условия для выделения голоса в толпе будут в большой по объёму студии с несколько подглушенной акустической обстановкой (сами зрители сидящие в зале способствуют этому).
В очень большой аудитории, в которой потенциальные выступающие сидят на очень большой площади, использовавлись интерференционные трубки, более длинные, чем те, о которых говорились выше. Одна из конструкция имела длинну 2 м. Голоса были слышны вполне разборчиво, однако качество звукопередачи было не высоким. Есть и ещё один недостаток: при резком повороте «пушки» в сторону только что заговорившего участника передачи качество звучания изменяется столь резко, что кажется, будто звукорежиссёр замешкался и не сразу ввел движек регулятора уровня на пульте.

Когда-то давно я сделал остронаправленный высокочувствительный микрофон и выложил результаты его испытаний в интернете. С тех пор прошло уже много лет, но мне по-прежнему приходят запросы на приобретение этого изделия. В абсолютном большинстве случаев желающие приобрести имеют представление об этом изделии из художественных кинофильмов, обычно детективных. Поэтому, как только я высылал им фото, их интерес к нему пропадал. Для тех, кому действительно интересно такое устройство я решил написать эту статью, в которой кратко рассказать о том, как сделать его своими руками.

Рис. 1

Структурно изделие состоит из параболического отражателя, приемного устройства, расположенного в его фокусе, НЧ усилителя, наушников и автономного блока питания. Все устройство закреплено на подвеске, позволяющей плавно поворачивать его в горизонтальной и вертикальной плоскости.
Чтобы представлять назначение каждого блока устройства напомню немного теории.

Пусть на параболический отражатель падает поток звуковых волн. Если источник звука достаточно далек, то звуковой поток можно представить в виде потока параллельных векторов. Падая на поверхность вектора отражаются в область фокуса (см. рис.2). Согласно волновой теории диаметр этой зоны d не может быть меньше длины волны падающего на отражатель звука. То есть, d ≥ λ, где λ = c/f. Здесь c – скорость звука, f – его частота. Будем считать, что форма параболического отражателя идеальна, а потому d = λ. Отсюда следует первая важнейшая характеристика устройства, его коэффициент усиления параболического отражателя: Kp = (D/d)2

Смысл данного соотношения очень прост. Звуковой поток падает на поверхность параболоида S = πD2/4. Параболоид концентрирует энергию потока в фокусе на поверхность приемного устройства площадью s = πd2/4. В результате на этой поверхности плотность энергии звукового потока возрастает в Kp = S/s = (D/d)2 раз. На фото диаметр параболического отражателя D = 90 см. Для волны λ = 15 см (f = 2000 гц.) получим Kp = (90/15)2 = 36.

Рис. 2

Второй важнейшей характеристикой устройства является его острота направленности. Этот параметр важен потому, что необходимо не просто усилить звуковой сигнал, а усилить полезный сигнал. Для этого необходимо с помощью диаграммы направленности «вырезать» его из общего звукового потока. Величину диаграммы направленности параболического отражателя можно вычислить так. Поворачивая параболоид (см. рис. 3) можно повернуть его на такой угол α, что область концентрации звукового потока выйдет за пределы приемного устройства. Поскольку размеры приемного устройства ограничены длиной волны принимаемого звука λ, то угол диаграммы направленности в первом приближении можно выразить так:
α = arctg(λ/F).

В устройстве, показанном на фото, параболический отражатель имеет фокусное расстояние F = 36 см. Отсюда, для λ = 15 см острота направленности устройства будет равна 22 градуса. Это достаточно малый угол. По этой причине параболический отражатель с приемным устройством установлены на подвеске (см.фото рис.1) которая позволяет плавно его поворачивать. Без этой подвески работать с устройством крайне затруднительно. К этому следует добавить, что в соотношения как коэффициента усиления (1), так и остроты направленности (2) входит длина волны λ. По мере ее уменьшения растут как коэффициент усиления, так и острота направленности. Это хорошо заметно при прослушивании акустического горизонта. Лучше всего слышны звуки высокой частоты: на природе крики птиц, в жилом районе звон посуды из открытых окон и форточек.

Рис. 3

Что касается приемного устройства, которое находится в фокусе параболоида (см. рис. 4). Основной частью устройства является кронштейн. В его центральной части есть отверстие. С одной стороны в нем закреплен конденсаторный микрофон, а с другой в него входит с небольшим зазором поршень из пенопласта, который приклеен к мембране. Сама мембрана вклеена в кронштейн. Кронштейн имеет окна, которые соединяют объем, ограниченный мембраной с объемом корпуса. Для увеличения акустического объема корпуса он заполнен синтепоном или иным волокнистым материалом.

Устройство помещено в фокусе параболического отражателя и работает следующим образом. Поток звуковых волн, отраженный параболическим отражателем падает на мембрану и заставляет ее колебаться. Из теории мембран следует, что под действием давления (звуковой волны) мембрана изгибается по форме параболоида четвертой степени. То есть под действием звуковых волн перемещается преимущественно центральная область мембраны. А это значит, что мембрана концентрирует энергию падающей звуковой волны в колебания своей центральной зоны. В результате поршень, который вклеен в центральную часть мембраны, будет возбуждать в объеме между ним и микрофоном колебания с амплитудой существенно превышающей амплитуду падающей на мембрану звуковой волны. Коэффициент усиления мембраны можно оценить так:
Km = (Dm/dk)2

Величину dk, т.е. размер зоны концентрации деформаций мембраны в первом приближении ее можно принять равной dk ≈ 0,2 Dm. Отсюда коэффициент усиления мембраны (для Dm = 15 см) будет равен: Km ≈ 25. Тогда общий акустический коэффициент усиления устройства будет равен: K = Kp Km = 36 x 25 = 900.

Некоторые практические советы по изготовлению остронаправленного высокочувствительного микрофона.

Рис. 4

Параболический отражатель

В своем устройстве в качестве отражателя я использовал прямофокусный отражатель спутниковой антенны с параметрами: D = 900 мм, F = 360 мм, F/D = 0.4. Материал отражателя – алюминиевый лист толщиной 1 мм. Подвеска (устройство поворота отражателя в двух плоскостях) стандартная от спутниковой антенны. Стойка с треногой самодельная.
Сейчас прямофокусных спутниковых «тарелок», тем более алюминиевых нет. Их вытеснили стальные офсетные. В принципе это не столь существенно. Неудобство состоит лишь в том, что стальная тарелка существенно тяжелее алюминиевой, а из-за офсетной формы, вектор ее диаграммы направленности не столь наглядный как у прямофокусной. Спутниковую тарелку можно купить как в специализированных фирмах, так и на радиорынке. Весте с «тарелкой» следует купить и ее подвеску, включая подвеску конвертора. То есть следует купить спутниковую антенну, но без электроники (конвертора и тюнера). Использовать для изготовления микрофона «тарелку» диаметром менее 900 мм нет смысла.

Приемное устройство

В качестве корпуса приемного устройства можно использовать любой цилиндрический контейнер подходящего (D ≈ 150 мм) размера. Например, можно использовать кружку из нержавеющей стали. Сейчас таких продают много.
Внутри корпуса размещается микрофонный НЧ усилитель. Я не электронщик, а потому использовал готовую схему усилителя и набор деталей КИТ ее реализующий. В качестве микрофона использовал конденсаторный микрофон диаметром около 1 см. Вопросы согласования характеристик микрофона и НЧ усилителя выяснял у продавцов наборов КИТ.
Выход усилителя и подвод к нему питания выведены на пятипиновый разъем, врезанный в корпус приемного устройства (см. фото).

Кронштейн (см. рис.3) выточен из пластика (я вытачивал из текстолита). Я не привожу его конкретные размеры. Достаточно задаться его внешним диаметром (у меня 150 мм) и диаметром микрофона (около 10 мм). Остальные размеры достаточно произвольные. Их соотношение можно взять, например, из приведенного рисунка 4.

Окна кронштейна (3 секторных окна) я высверлил, края обработал напильником. Затем подобрал тонкостенную металлическую трубку длиной миллиметров 50…100, с наружным диаметром, равным диаметру микрофона. После просверлил в кронштейне отверстие диаметров, равным наружному диаметру этой трубки. Край трубки заточил так, что получил из нее высечку. За тем подготовил пластину из пенопласта толщиной 5…7 мм. Вращая высечку, вырезал с ее помощью из пенопластовой пластины поршень. Поршень оставил в трубке.

После этих подготовительных работ можно вклеивать мембрану. Из папиросной либо иной тонкой бумаги вырезаем круг, равный диаметру кронштейна. Вклеиваем его в кронштейн с помощью водостойкого клея (резиновый клей, клей 88, «Момент» (каучуковый) и др.) После того как клей высох смачиваем (например ватным тампоном) вклеенную мембрану водой и даем ей высохнуть. После высыхания мембрана туго натянется. После этого в мембрану можно вклеить пенопластовый поршень, который находится в металлической трубке. Для этого выступающий из трубки торец поршня смазываем водостойким клеем. Но не «Моментом», он интенсивно растворяет пенопласт. Резиновый или 88 – ой. Кладем кронштейн на плоскую поверхность мембраной вниз и в центральное отверстие вводим трубку с поршнем. Не вынимая трубки, выталкиваем из нее поршень до соприкосновения с мембраной. За тем, прижимая поршень к мембране, осторожно вынимаем трубку из отверстия кронштейна. Все поршень вклеен. Спрашивается, зачем все эти сложности. За тем, чтобы поршень был установлен в отверстии кронштейна с минимальным зазором и строго коаксиально.

После вклейки поршня с другой стороны отверстия закрепляем микрофон. Например, подматываем на его боковую поверхность бумагу и плотно вставляем микрофон в отверстие. Соединение микрофона с платой НЧ усилителя желательно сделать разъемным. При проверке и настройке НЧ усилителя микрофон придется многократно отключать и подключать к плате усилителя. Кронштейн с вклеенной мембраной и микрофоном закрепляется в корпусе приемного устройства с помощью боковых винтов (саморезов). После того как НЧ усилитель настроен его плата закрепляется в корпусе приемного устройства, например с помощью термоклея. После этого корпус приемного устройства заполняется волокнистым материалом (синтепон, хлопковая вата и т.п. волокнистым материалом) и закрывается собранным кронштейном. Чтобы защитить бумажную мембрану от повреждения ее следует закрыть не очень толстой (8…10 мм) пластиной поролона (пенополиуритана). Поролон закрыть тонкой полиэтиленовой пленкой. Такая защита сколько ни будь существенно качество приема не снижает, но защищает мембрану от дождя и шума ветра.

Блок питания

Сейчас полно недорогих малогабаритных аккумуляторных батарей на основе которых можно сделать блок питания устройства. Кроме своего прямого назначения он используется также для коммутации. То есть аккумуляторная батарея размещается в корпусе, который используется для закрепления в нем следующий элементов. Выключатель питания, резистор управления уровнем сигнала с НЧ усилителя, пятипиновый разъем для подключения приемного устройства (на фото виден кабель, соединяющий разъем приемного устройства и блока питания). Кроме этого разъем для подключения наушников, и, при необходимости, записывающего устройства, которое содержит аналоговый вход.

После того как все блоки готовы устройство собирается в целом. Приемное устройство закрепляется вместо конвертора в фокусе спутниковой тарелки. С помощью штатной подвески тарелка устанавливается в подходящей треноге. Кабелем соединяем блок питания и приемное устройство. Подсоединяем наушники. Все, высокочувствительный остронаправленный микрофон готов к работе. Осталось только включить питание и начать прослушивать акустический горизонт.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *