Портландцемент, что это?

15

Портландцемент, его основные свойства и область применения.

Портландцемент является важнейшим вяжущим веществом. По производству и применению он занимает первое место среди других вяжущих веществ.

Изобретение портландцемента (1824 г.) связано с именами Егора Герасимовича Челиева — начальника мастерских военно-рабочей бригады н Джозефа Аспдина — каменщика из англий­ского города Лидса.

• Портландцемент — гидравлическое вяжущее вещество, твер­деющее в воде и на воздухе. Его получают тонким измельчением обожженной до спекания сырьевой смеси известняка и глины, обеспечивающей преобладание в клинкере силикатов кальция. Спекшаяся сырьевая смесь в виде зерен размером до 40 мм назы­вается клинкером; от качества его зависят важнейшие свойства цемента: прочность и скорость ее нарастания, долговечность, стойкость в различных эксплуатационных условиях.

Для регулирования сроков схватывания в обычных цементах марок 300…500 при помоле к клинкеру добавляют гипс не ме­нее 1,0% и не более 3,5% от массы цемента в пересчете на ан­гидрид серной кислоты SO3, а в цементах высокомарочных и быстротвердеющих — не менее 1,5% и не более 4,0%. Портландцемент выпускают без добавок или с активными минеральными добавками.

ГОСТ 10178—85 предусматривает выпуск трех разновид­ностей портландцемента: ДО — без добавок, Д5 — с введением до 5% активных минеральных добавок всех видов и Д20, в кото­рую разрешается вводить свыше 5%, но не более 20% добавок, в том числе до 10% активных минеральных добавок осадочного происхождения (кроме глиежа) или до 20% доменных и электро-термофосфорных гранулированных шлаков, глиежей и прочих активных минеральных добавок.

К основным свойствам портландцемента можно отнести. • Твердение портландцемента — при затворении портландцемента водой образуется пластичное клейкое цементное тесто, постепенно густеющее и переходящее в камневидное состояние.

При твердении портландцемента происходит ряд весьма слож­ных химических и физических явлений. Каждый из минералов при затворении водой реагирует с ней и дает различные новообразо­вания.

Процесс твердения портландцемента в основном определяется гидратацией силикатов, алюминатов и алюмоферрнтов кальция.

Взаимодействие С3S с водой при комнатной температуре проис­ходит при полной гидратации:

2(3CaO-Si02) + 6Н20 = 3CaO.2Si02.3H20 + 3Ca(OH)2

• Прочность портландцемента. Согласно ГОСТ 10178—85. прочность портландцемента характеризуют пределами прочности при сжатии и изгибе. Марку цемента устанавливают по пределу прочности при изгибе образцов балочек 40 X 40 X 160 мм и при сжатии их половинок, изготовленных из раствора состава 1:3 (по массе) с нормальным песком при водоцементном отношении 0.4 и испытанных через 28 сут; образцы в течение этого времени хранят во влажных условиях при температуре (20 ± 2)°С. Предел прочности при сжатии в возрасте 28 сут называется активностью цемента.

При благоприятных условиях твердение портландцемента может продолжаться месяцы и даже годы, в 2…3 раза превысив (28-суточную) прочность. Можно считать, что в среднем прирост прочности портландцемента подчиняется логарифмическому закону.

Теоретический предел прочности цементного камня при сжатии очень велик, составляет более 240…340 МПа. Практически при формовании бетонов прессованием была получена прочность 280 МПа и более.

Прочность цементного камня и скорость его твердения зависят от минералогического состава клинкера, тонкости помола цемента, содержания воды, влажности, температуры среды и продолжительности хранения.

Большое влияние на рост прочности цементного камня оказы­вают влажность и температура среды. Скорость химических ре­акций между клинкерными минералами и водой увеличивается с повышением температуры, а также значительно возрастает скорость уплотнения продуктов гидратации цемента. Наиболее быстрый рост прочно­сти цементного камня происходит при пропаривании под давле­нием в автоклавах, при этом бетон через 4…6 ч приобретает марочную прочность.

Твердения портландцементного камня при отрицательных температурах не происходит, так как вода превращается в лед. Однако за счет добавки СаСl2. NaCI или их смеси бетон все же набирает прочность. Хлористые соли являются ускорителями твердения цемента. Однако применение этих солей в количестве более 2% в железобетонных конструкциях не реко­мендуется из-за возможной коррозии арматуры. В последнее время в качестве противоморозной добавки используют нитрит натрия NaNO2.

• Водопотребность цемента определяется количеством воды (% от массы цемента), необходимым для получения теста нормальной густоты. Водопотребность портландцемента 24..28%, при введении активных минеральных добавок осадочного проис­хождения (диатомита, трепела, опоки) водопотребность повыша­ется до З2…37%.

• Продолжительность хранения. Длительное хранение цемента даже в самых благоприятных условиях влечет за собой некоторую потерю его активности. После 3 мес хранения потеря активности цемента может достигать 20%. а через год — 40%. Восстанавливать активность лежалого цемента можно вторичным помолом. Наиболее эффективен вибродомол цемента, в процессе которого повышается тонкость помола цемента, а также происходит обдирка гидратных и инертных оболочек с цементных зерен. Наиболее целесообразным методом предотвращения потери активности це­мента является гидрофобизация.

• Коррозия цементного камня в водных условиях по ряду веду­щих признаков может быть разделена на три вида:

I вид коррозии — разрушение цементного камня в результате растворения и вымывания некоторых его составных частей. Наи­более растворимой является гидроксид кальция, образующийся при гидролизе трехкальциевого силиката.

Мерой зашиты бетона от I вида коррозии являет­ся применение цемента, выделяющего при своем твердении мини­мальное количество свободной Ca(OH)2. Таким цементом является белитовый, содержащий небольшое количество трехкальциевого силиката.

II вид коррозии — разрушение цементного камня водой, со­держащей соли, способные вступать в обменные реакции с со­ставляющими цементного камня. При этом образуются продук­те которые либо легкорастворимы и уносятся фильтрующей через бетон водой, либо выделяются в воде аморфной массы, не обладающей связующими свойствами В результате таких преобразований увеличивается пористость цементного камня и, следовательно, снижается его прочность.

Разру­шение цементного камня под действием воды, содержащей рас­творенные соли, показывают, что основной причиной этого раз­рушения является содержание в цементном камне (бетоне) сво­бодного гидроксида кальция Са(ОН)2. Если же ее связать в другое трудно растворимое соединение, сопротивление бетона коррозии II вида должно возрасти. Это и имеет место при ис­пользовании активных минеральных добавок.

К III виду коррозии относятся процессы, возникающие под действием сульфатов. В порах цементного камня происходит отложение малорастворимых веществ, содержащихся в воде, или продуктов взаимодействия их с составляющими цементной) кам­ня. Их накопление и кристаллизация в порах вызывают значи­тельные растягивающие напряжения в стенках пор и приводят к разрушению цементного камня.

Характерным видом сульфатной коррозии цементного камня является взаимодействие растворенного в воде гипса с трехкаль-циевым гидроалюминатом:

3CaO • AI2O3 • 6H2O+3CaS04 + 25H2O ЗСаО • Аl2О3 • 3CaSO4 • 31Н2О

При этом образуется труднорастворимый гидросульфоалюмнинат кальция, который, кристаллизуясь, поглощает большое коли­чество воды и значительно увеличивается в объеме (примерно в 2.5 раза), что оказывает сильное разрушающее действие на цементный камень.

Исключить или ослабить влияние коррозионных процессов при действии различных вод можно конструктивными мерами, путем улучшения технологии приготовления бетона и применения цементов определенного минералогического состава и необходи­мого содержания активных минеральных добавок.

Используя конструктивные меры, предотвратить действие воды на бетонную конструкцию возможно путем устройства гид­роизоляции, водоотводов и дренажей. Повышение водостойкости бетона технологическими средствами достигается интенсивным уплотнением бетона при укладке или формовании, использова­нием бетонных смесей с минимальным водоцементным отноше­нием, с тщательно подобранным зерновым составом заполнителей.

• Морозостойкость. Совместное попеременное действие воды и мороза влечет за собой разрушение бетонных сооружений. При отрицательных температурах вода, находящаяся в порах цемент­ного камня, превращается в лед, который увеличивается в объ­еме примерно на 9% по сравнению с объемом воды. Лед давит на стенки пор и разрушает их.

Морозостойкость цементного камня зависит от минералогиче­ского состава клинкера, тонкости помола цемента и водоцементного отношения.

Присутствие в цементе в значительном количестве активных минеральных добавок отрицательно влияет на морозостойкость цементного камня вследствие высокой пористости их и низкой морозостойкости продуктов взаимодействия добавок с компонен­там цементного камня. Среди минералов клинкера наименее морозостойким является С3А. поэтому его содержание в цементе для морозостойких бетонов не должно превышать 5..7%.

Увеличение водоцементного отношении понижает морозостой­кость цементного камня вследствие повышении его пористости. Пластифицирующие до­бавки СДБ существенно снижают водопотребность бетонных смесей при сохранении заданной подвижности и тем самым уменьшают пористость цементного камни. Некоторые гндрофоби-зуюшие добавки обладают воздухововлекающей способностью (пузырьки воздуха в бетонной смеси амортизируют давление льда), повышают однородность структуры цементного камня (придают водоотталкивающие свойства) и гидрофобизуют стен­ки пор и капилляров, увеличивая тем самым сопротивляемость цементного камня действию воды.

Надо иметь в виду, что замораживание цементного камня в начальный период твердения является наиболее опасным, так как он еще не обладает достаточной прочностью и не может энергич­но сопротивляться действию льда.

Область применения.

О многом говорит название портландцемента. Но еще больше информации скрывается в его маркировке.

  • «М» — буква, означающая максимальную степень нагрузки, что будет способен выдержать цемент после высыхания.

  • Например, м400 показывает, что его максимальная нагрузка составляет 400 кг/м3. Широко используются цемент м400, м500.

  • Для строительных работ применяются м400 и цемент м500.

  • «Д» — буква, обозначающая процент содержащихся в цементе добавок. Их количество и состав определяют прочностные характеристики и его дополнительные свойства.

  • Маркировка м400 Д20 сообщает о том, выдерживающий нагрузку до 400кг/м3 цемент содержит 20% примесей. Используется такой бетон и в строительстве и для изготовления железобетона. Он обладает отличными морозостойкими и водостойкими показателями. Тонкость помола цемента определяется величиной остатка на сите, оснащенного сеткой установленного стандартами и техническими требованиями номера. Чем тоньше помол, тем выше скорость его схватывания и твердения, а так же прочность. Особенно это касается начального этапа твердения.

Цемент ПЦ500 Д0
Цемент марки ПЦ500 Д0 применяется при производстве ответственных бетонных и железобетонных конструкций в промышленном строительстве, где предъявляются высокие требования к водостойкости, морозостойкости, долговечности. Цемент этой марки эффективен при проведении аварийных ремонтных и восстановительных работ ввиду высокой начальной прочности бетона.

Цемент ПЦ500 Д20
Цемент марки ПЦ500 Д20 применяется в промышленном, жилищном и сельскохозяйственном строительстве для производства сборного железобетона, фундаментов, балок, плит перекрытий и др., а так же успешно используется для изготовления бетонных и строительных растворов, штукатурных, кладочных и других ремонтно-строительных работ. Цемент этой марки обладает водостойкостью, морозостойкостью, пониженной сопротивляемостью коррозионным воздействиям по сравнению с обычным портландцементом.

Цемент ПЦ400 Д0
Цемент марки ПЦ400 Д0 используется для производства сборных бетонных и железобетонных конструкций с применением термовлажностной обработки, а также для бетонных, железобетонных подземных, надземных и подводных сооружений, подвергающихся действию пресных и минерализированных вод. Цемент этой марки успешно зарекомендовал себя для изготовления бетонных и строительных растворов.

Цемент ПЦ400 Д20
Цемент марки ПЦ400 Д20 применяется в промышленном, жилищном и сельскохозяйственном строительстве для производства сборного железобетона, фундаментов, балок, плит перекрытий, стеновых панелей и др. Цемент этой марки обладает хорошей водостойкостью и морозостойкостью.

Конструктивные элементы зданий.

Основные элементы зданий. При всем разнообразии зданий все они состоят из ограниченного числа взаимосвязанных архитектурно-конструкционных элементов (частей).

По функциональному назначению их подразделяют на несущие, ограждающие и совмещающие обе эти функции. Несущие конструкции воспринимают нагрузки, возникающие в здании и действующие на него извне (от конструкций самого здания, оборудования, снега, ветра, людей); ограждающие — предназначены для изоляции внутренних объемов в зданиях и сооружениях от внешней среды или между собой с учетом нормативных требований по прочности, теплоизоляции, гидроизоляции, пароизоляции, воздухопроницаемости, звукоизоляции, светопрозрачности. Те ограждающие конструкции, которые могут воспринимать передаваемые на них нагрузки, относятся к совмещающим несущие и ограждающие функции. Такие конструкции должны удовлетворять соответствующим требованиям по несущей способности, а также по теплопроводности, влаго- и воздухопроницаемости, звукоизоляции.

К основным конструктивным элементам зданий относятся: фундаменты, стены, перекрытия, перегородки, крыша, лестница, окна, двери.

Фундамент представляет собой опорную часть, через которую передается нагрузка от здания на грунт — основание. Основание называют естественным, когда грунт под подошвой фундамента находится в состоянии его природного залегания; если грунт предварительно искусственно укрепляют, то такое основание называют искусственным. Фундаменты подвержены воздействию грунтовых вод, нередко агрессивных, и переменной температуры, поэтому для возведения фундаментов применяют материалы, обладающие высокой прочностью, водо- и морозостойкостью: железобетон, бетон, бутовый камень. В массовом строительстве фундаменты под стены зданий сооружают, как правило, сборными: из железобетонных плит и блоков. Обычно фундаменты, имеющие плоскую подошву, подразделяют на ленточные, которые закладывают под стены, или столбчатые — в виде прямоугольных, трапециевидных и других типов отдельных опор под отдельно стоящие колонны или столбы. Фундаменты бывают и свайные, когда здание опирается на погруженные в грунт деревянные, бетонные или железобетонные сваи.

Стены по назначению и расположению в здании подразделяют на наружные и внутренние. Наружные стены ограждают помещения от внешней среды и защищают их от атмосферных воздействий, внутренние — отделяют одни помещения от других. Как наружные, так и внутренние стены воспринимают ветровые нагрузки на здание, обеспечивают звуко- и теплоизоляцию помещений, защиту их от внешних климатических воздействий.

Стены бывают несущими, самонесущими и ненесущими. Несущие стены и воспринимают, и передают на фундаменты нагрузки не только от собственного веса, но и от других конструкций (перекрытия, крыши, лестницы), а также ветровые нагрузки. Самонесущие стены передают на фундаменты нагрузки только от собственного веса. На такие стены не опираются перекрытия или другие конструкции здания.

Стены, которые только ограждают помещения зданий от внешнего пространства и передают собственный вес в пределах каждого этажа на другие несущие конструкции, называются ненесущими. Такие же стены, навешиваемые на вертикальные конструкции каркаса здания, принято называть навесными. Верхняя часть наружной стены, выступающая за плоскость стены, называется карнизом. Вынос карниза, т. е. расстояние от стены до края карниза, назначают по проекту. При этом учитывают необходимость защиты стен от воды, стекающей с крыши, и архитектурные особенности здания. Здания со стенами без карниза имеют парапет, который является ограждающей частью крыши.

Междуэтажные перекрытия совмещают ограждающие и несущие функции и разделяют здание по высоте на этажи. Перекрытия над верхним этажом — чердачные. Перекрытия в каменных зданиях выполняют из сборных железобетонных панелей, в малоэтажных домах — иногда из деревянных балок, к которым прикрепляют детали потолка из фанеры, древесностружечных плит или гипсокартонных листов.

Перегородки — ограждающие элементы, которыми разделяют внутреннее пространство здания в пределах одного этажа на отдельные помещения, возводят из гипсовых, фибролитовых плит, керамических и других пустотелых камней, кирпича и других материалов. Перегородки опираются на перекрытия и на них передают собственный вес.

Крыша совмещает ограждающие и несущие функции и служит для защиты здания от атмосферных осадков и удаления их за его пределы; состоит из железобетонных панелей, опирающихся на наружные и внутренние стены и уложенных с уклоном для организации водоотвода. Между панелями крыши и чердачными перекрытиями образуется пространство, которое называют чердаком. В малоэтажных зданиях крышу делают из деревянных стропил, по которым из досок устраивают обрешетку, к которой прикрепляют кровельное покрытие из асбестоцементных и других листов или кровельного железа.

Лестницы служат для сообщения между этажами; располагаются в помещениях с несущими стенами (лестничных клетках). Часть лестницы между площадками называется маршем. В лестничных клетках, как правило, размещают также лифты.

Основные особенности строительной продукции.

Строительная продукция представляет собой все, что может удовлетворить потребность человека в объектах недвижимости для купли-продажи с целью приобретения для личного или общественного пользования. Это могут быть готовые здания и сооружения, строительные конструкции и материалы, строительные услуги подрядчика, проектно-изыскательская и научно-исследовательская деятельность. В любом случае, покупая жилой дом или любой строительный материал, покупатель должен ощущать очевидную выгоду от приобретенного изделия.

К основным особенностям строительной продукции следует отнести следующее:

• стационарность как в период создания, так и в течение всего срока эксплуатации;

• продолжительный жизненный цикл строительной продукции (жилой дом легче отремонтировать, чем купить новый);

• высокую капиталоемкость строительной продукции, что ограничивает круг потенциальных покупателей;

• потребительские предпочтения консервативны и менее подвержены моде;

• преобладает не массовый, а дифференцированный подход в создании и реализации объектов строительства;

• каналы распределения характеризуются высоким уровнем специализации;

• созданная строительная продукция испытывает жесткую конкуренцию со стороны вторичного рынка;

• необходима четкая процедура финансирования в связи с длительным сроком воспроизведения продукции;

• создание каждой единицы продукции требует вовлечения большого количества участников и привлечения новых партнеров.

Следует отметить, что ни одна из рассмотренных особенностей строительной продукции не создает преимуществ для успешного функционирования на рынке, а лишь делает проблемы строительных фирм более многоаспектными и сложными.

При определении стратегий маркетинга для отдельных видов товаров строительного производства у производителя возникает необходимость классифицировать свою продукцию на основе имеющихся характеристик. Строительную продукцию можно разбить на следующие группы:

• строительные материалы – товары, полностью используемые в процессе строительства (сырье – песок, гравий, глина; продукты и полуфабрикаты – цемент, битум);

• строительные конструкции и изделия – материальные компоненты, которые используются строительно-монтажной организацией в процессе сооружения объектов строительства. Эти изделия не требуют на строительной площадке никаких доработок, их конструкции и параметры отвечают требованиям проекта. Наибольшее значение при покупке этих изделий имеют цена товара, надежность поставщика, качество продукции и соответствие ее параметров требованиям проекта. Эти условия должны лежать в основе маркетинговых решений;

• готовые здания и сооружения – в городах это многоэтажные или одноэтажные жилые дома. Более состоятельная часть населения предпочитает индивидуальные проекты, учитывающие вкусы отдельных потребителей.

При выборе поставщика строительных материалов и конструкций основными факторами являются простота транспортной схемы, близость производителя к потребителю, соответствие сырья технологическим требованиям производства, надежность поставщика относительно сроков, объемов и стоимости поставок.

Цемент – один из основных материалов, применяемых во всех отраслях строительства. Используется в качестве гидравлического вяжущего в растворах и смесях, необходимых для строительства монолитных сооружений и сборных конструкций, проведения ремонтных работ и отделочных мероприятий. Портландцемент – наиболее популярный тип цемента, получаемый путем тонкого помола клинкера с добавкой двуводного гипса в количестве 1,5…3,5%, необходимого для изменения сроков схватывания вяжущего.

Изготовление портландцемента происходит в три стадии:

  • Приготовление сырьевой смеси. Минералогический состав сырьевой смеси для изготовления портландцемента – карбонатные горные породы (мел, известняк, глинозем, кремнезем) и мергелий, содержащие оксиды кальция, кремния, железа, алюминия, магния. Сырье измельчают и смешивают в оптимальных пропорциях.
  • Производство клинкера. Его получают обжигом подготовленной сырьевой массы в высокотемпературных печах при +1300…+1400°C.
  • Приготовление портландцемента для поставки потребителям. Клинкер измельчают и смешивают с гипсом. При необходимости в материал добавляют другие компоненты, позволяющие получить определенные свойства готового продукта.

В зависимости от состава сырьевой смеси, меняется истинная плотность портландцемента. Максимальный показатель у бездобавочного цемента – 3100 кг/м3, у шлакопортландцемента и пуццоланового вяжущего она ниже и составляет – 2700-2900 кг/м3.

Основные реакции при затворении цемента водой

После смешивания портландцемента и составов на его основе происходят следующие химические реакции:

  • Первоначальное упрочнение материала. Осуществляется, благодаря взаимодействию с водой гипса и трехкальциевого алюмината. В результате такой реакции формируется кристаллическая структура эттрингита, моносульфата и алюмината кальция гидрата.
  • Вторая реакция – медленная. Она протекает между водой и трехкальциевым силикатом. При этом образуется силикат кальция, имеющий аморфную структуру. Иначе он называется CSH-гель. В ходе этого этапа продолжается твердение смеси или раствора на основе портландцемента и развитие внутренних сил натяжения. Образующиеся цементные структуры обволакивают и прочно связывают между собой отдельные зерна мелкого и крупного заполнителей.
  • В результате третьей стадии в структуре появляется силикагель SiO2.

Разновидности портландцемента и области их применения

В соответствии с ГОСТом 31108-2016 портландцемент по составу, а следовательно, по физическим и техническим характеристикам разделяют на 5 основных видов.

Бездобавочный

Обозначение – ЦЕМ I. В составе присутствуют только клинкер и гипс. Допустимое содержание минеральных добавок – до 5%. Основная особенность бездобавочного портландцемента – свойство быстро схватываться и набирать прочностные характеристики. Уже на следующий день после заливки бетон или цементно-песчаный раствор приобретают примерно 50% от марочной прочности. Бездобавочное вяжущее применяется при строительстве монолитных и сборных бетонных и железобетонных конструкций. Не рекомендуется для использования в особых условиях, отличающихся от нормальных.

С активными минеральными добавками

Маркировка – ЦЕМ II. Портландцементный клинкер и активные минеральные добавки могут перемалываться совместно или по отдельности. Количество добавок – 6-35%. Чем выше их содержание в портландцементе, тем медленнее бетон или цементно-песчаный раствор набирают марочную прочность. В качестве таких добавок используют горные породы – диатомит, опоку, трепел, пемзу, вулканический пепел и другие.

Введение этих компонентов в состав портландцемента позволяет снизить себестоимость, но при этом немного ухудшаются прочность и другие технические свойства конечного продукта. Есть еще один положительный момент использования активных минеральных добавок, основу которых составляет аморфный кремнезем. Этот компонент легко реагирует с гидроксидом кальция, который образуется при гидратации цемента. При этом происходит образование труднорастворимых гидроксидов кальция, не вымывающихся из цементного камня. Их присутствие значительно повышает водонепроницаемость конечного продукта.

Шлакопортландцемент

Обозначение – ЦЕМ III. Вяжущее, содержащее гранулированный шлак в количестве 6-35%, относится к нормально твердеющим. Его получают совместным помолом клинкера, шлака и гипса. В шлаках, как и в активных минеральных добавках, содержится амфорный кремнезем. Шлакопортландцемент стоит дешевле обычного цемента примерно на 15%. Он медленнее набирает прочность, но через 2-3 месяца по этому показателю опережает портландцемент такой же марки. Минус шлакосодержащего вяжущего – низкая морозостойкость. Поэтому оно используется при строительстве массивных наземных, подземных и подводных конструкций, которые не подвергаются частым циклам замораживания-оттаивания.

Пуццолановый

Обозначается как ЦЕМ IV. Его получают совместным помолом клинкера, минеральной добавки и гипса. Возможно перемалывать их отдельно, а затем тщательно смешивать. Ограничение по содержанию трехкальциевого алюмината – не более 8%. Для него характерно медленное твердение в первые сроки схватывания. Во влажных условиях бетон из пуццоланового цемента догоняет бетон из обычного портландцемента через 3-6 месяцев.

Благодаря медленному твердению, пуццолановые цементы выделяют меньшее количество тепла, поэтому они применяются при строительстве массивных конструкций, для которых важным моментом является отсутствие термических деформаций. ППЦ хорошо набирают прочность при повышенных температурах, поэтому они используются при изготовлении изделий, которые подвергаются тепловой и влажностной обработке в автоклавах. Бетоны на ППЦ имеют высокую водонепроницаемость и сульфатостойкость, но низкую морозостойкость. Поэтому они используются при строительстве подводных и подземных объектов или подводной и подземной частей наземных объектов, которые находятся в контакте с мягкими и сульфатсодержащими водами. Количество циклов замораживания-оттаивания для таких бетонных конструкций должно быть сведено к минимуму.

Таблица пропорций компонентов портландцементов различных типов

Соответствие классов прочности и марок портландцемента по ГОСТам 31108-2016 и 10178-85

Маркировку и свойства цемента в настоящее время регламентируют два действующих ГОСТа, что приводит к некоторой путанице:

  • ГОСТ 31108-2016 – совсем новый, и он приведен в соответствие с европейскими стандартами. Согласно этому нормативу в маркировке применяется буквосочетание ЦЕМ с буквенно-цифровыми обозначениями, которые мы показали в таблице, расположенной выше. Прочность по этому ГОСТу обозначается классами.
  • ГОСТ 10178-85. В соответствии с этим стандартом значение прочности обозначается маркой.

Таблица соответствия марок и классов прочности портландцемента

Класс прочности по ГОСТу 31108-2016 Марка прочности по ГОСТу 10178-85 Выдерживаемое давление
МПа кгс/м3
В 22,5 М300 22,5 300
В 32,5 М400 32,5 400
В42,5 М500 42,5 500
В 52,5 М600 52,5 600

Вступление

Самый используемый строительный материал в любой области строительства и ремонта, безусловно, является цемент. В гражданском и частном строительстве, также ремонте жилого сектора самым популярным видом цемента является портландцемент.

Цемент используют в строительстве фундамента дома, кладки стен, штукатурных и ремонтных работах, строительства построек и пристроек, устройства дорожек и строительстве бассейнов. О строительстве бассейнов под ключ можно узнать на сайте http://aquaes.ru/.

Портландцемент это

Нельзя сравнивать цемент и портландцемент. Такое сравнение не корректно. Портландцемент это вид цемента, а проще говоря, это целая группа разнохарактерных видов простого цемента.

Цемент марки портланд

Изготавливают цемент из гипса и молотого клинкера. Клинкер обожженная смесь глины и извести. Полученные гранулы клинкера, перемалывают и добавляют гипсовый порошок.

Это состав самого простого ПЦ, продающийся в отечественных магазинах под марками М400/500/600 (ГОСТ 10178). Цифра в маркировке означает прочность получаемого монолита на вертикальную нагрузку. В продаже можно найти цементы по ТУ М200, М300 и М700. Есть варианты М800 и М900.

Однако, для получения специальных свойств производители могут добавлять в клинкер добавки в виде оксида железа, оксида магния, алюминаты, оксиды кремния и кальция, силикаты.

Также некоторые производители добавляют в цемент минеральные добавки в виде, пемзы, вулканического туфа, кремнеземистых отходов, а также современные пластификаторы.

Марка цемента

Цемент продается в мешках, чаще бумажных с буквенно-цифровой маркировкой. В маркировке портландцемента используют для маркировки буквы ПЦ, чаще букву М. Цифры в маркировке цемента обозначают прочность конструкции из этого цемента на сжатие. Начинается маркировка цемента с цифры 300, с шагом в 100 до цифры 700 (300, 400, 500, 600, 700).

Например, цемент марка М300 выдержит нагрузку до 300 килограмм на 1 кубический метр.

Если в маркировке присутствуют другие буквы, это значит, что в цементе есть добавки для улучшения пластичности и прочности цемента. Обычно добавки маркируют буквой Д. Например, Д40, означает что таких добавок 40%.

Разновидности портландцемента

Цемент БТЦ

БТЦ это портландцемент быстротвердеющий. Данный цемент наберёт полную прочность через трое, а не через 28 суток.

ПЦ сульфато-стойкий

Этот цемент имеет стойкость к сульфатным водам и очень медленно твердеет. Используется для подводных и подземных сооружений.

ПЦ с активными добавками

В данный вид цемента добавляют активные добавки, пластификаторы. Они придают делают бетон водо отталкивающим и высоко пластичным.

Белый ПЦ

Белый портландцемент, считается декоративным. Однако, для получения белого цемента, в смеси значительно снижают содержание железа, и не используют пигментные добавки. Такая обработка делает его в три раза дороже, обычного серого цемента.

Цемент ШПЦ

Это шлаковый портландцемент. ШПЦ устойчив к агрессивным средам, используется в гидросооружениях.

Цемент ИПЦ

Это известково–шлаковый портландцемент. В состав входит доменный шлак, известь, гипс, готовый портландцемент. Используется только в воде, на воздухе разрушается.

Цемент глиноземистый

Данный цемент производят из клинкера в состав которого входят обожженная смесь алюминиевой руды и известняка. По количеству глинозема подразделяют глиноземистый и высокоглиноземистый цементы.

Глиноземистый без гипса и минеральных добавок. Из-за чего, он быстро твердеет, но медленно схватывается. Для усиления схватывания в него добавляют портландцемент или известь.

Высокоглиноземистый используют для защиты печей и промкотлов, из-за его жаропрочности.

Как определяют качество цемента при покупке

Чтобы определить качество цемента при его покупке, нужно:

  • Зачерпнуть в мешке пригоршню цемента;
  • Сожмите кулак;
  • Если цемент высыпается через пальцы, значит это партия высококачественного цемента;
  • Если вы почувствуете в цементе комочки, значит цемент мог контачить с влагой и его качество не вызывает доверия.

Срок годности цемента

Как ни странно, цемент скоропортящейся продукт. Через 90 дней после изготовления, цемент теряет 20% завяленных характеристик. Через 6 месяцем потри составят 30%, через год – 40%.

Важно! Для долгого хранения купленного цемента бумажный мешок цемента нужно упаковать в полиэтиленовый пакет.

Марки цемента

М300

М300 характеризуется повышенной водо-стойкостью и водо-непроницаемостью, и стойкостью к некоторым видам коррозии.

М400

Портландцемент М400 (ГОСТ 10178-85) обладает высокой морозо и влаго-устойчивостью. Применяется в железобетонных конструкциях, сооружениях наземных и подземных, включая фундаменты.

М500 (ГОСТ 10178-85)

Данный портландцемент использует для строительства мостов, бетонных и железобетонных конструкций, военных сооружений повышенной прочности, а также в восстановительных работах.

Портландцемент — гидравлическое вяжущее вещество, твердеющее в воде и в воздухе, получаемое путем совместного тонкого измельчения клинкера и необходимого количества гипса. Портландцементный клинкер — продукт спекания сырьевой смеси необходимого химического состава, обеспечивающего преобладание после обжига силикатов кальция.
Основными сырьевыми материалами для получения портландцемента являются известняки и глинистые породы или их природные смеси — мергели. Применяют также разнообразные отходы промышленности: золы, шлаки, нефелиновый шлам и др.
Производство портландцемента складывается из двух стадий: получения клинкера и его измельчения с добавками. Основными технологическими операциями производства цементного клинкера являются: разработка и подготовка сырьевых материалов, включающие добычу, измельчение и при необходимости их сушку; получение однородной сырьевой смеси при совместном измельчении и смешении компонентов; обжиг сырьевой смеси РР спекания, обеспечивающего прохождение физико-химических ПРОЦЕССОВ клинкерообразования, и охлаждение.
Состав и свойства портландцемента.
Свойства портладцемента зависят от состава и особенностей строения клинкера. Повышенное содержание в клинкере оксида кальция, связанного в минералы, позволяет получить цемент с высокой активностью и скоростью роста прочности во времени. Содержание свободного СаО в клинкере колеблется от 0 до 2%, обычно стремятся свести его до минимума за счет полного прохождения реакций клинкерообразования. Свободный оксид кальция, оставшийся в клинкере, вызывает неравномерность изменения объема и снижает
прочность цементного камня.
Оксид магния также отрицательно сказывается на свойствах цемента. Содержание МgО в портландцементе должно быть не более 5%. Вредное влияние свободных оксидов кальция и магния обусловлено их способностью к медленному гашению и развитию внутренних напряжений в затвердевших бетонах и растворах.
Наиболее значительные по содержанию клинкерные минералы называют алитом и белитом. Алит — это твердый раствор трехк-альциевого силиката С38 и небольшого количества А12О3, МgО и др. Твердый раствор в данном случае является результатом внедрения указанных оксидов в кристаллическую решетку трехкальциевого силиката. Алит в значительной степени определяет свойства портландцемента, его высокую прочность и скорость роста ее во времени.
Белит является вторым по содержанию клинкерным минералом и представляет собой твердый раствор бета-двухкальциевого силиката (Р-С25) и др. Он твердеет медленно, однако неуклонно наращивает прочность во времени.
При просмотре клинкера под микроскопом четко различаются призматические кристаллы алита и округлые – белита.
В состав находящегося между ними промежуточного вещества входят алюминатная и алюмоферритная фазы. Алюминаты в клинкере представлены трехкалыдиевым алюминатом быстросхватывающимся минералом, затвердевающим в первые сроки с большим тепловыделением. Алюмоферритная фаза представляет собой твердый растворразличных алюмоферритов и в большинстве клинкеров близка по составу к четырехкалыдиевому алюмоферриту.
Для некоторых специальных видов портландцемента минералогический состав может не укладываться в указанные пределы. Повышение содержания минералов силикатов (особенно алита) улучшает прочностные и другие свойства цемента, однако затрудняет обжиг клинкера.
При производстве цемента выбирают рациональные составы клинкера, обеспечивающие как высокое качество продукции, так и оптимальные условия работы вращающихся печей.
Высокая тонкость измельчения цементного клинкера является Ю необходимым Условием проявления его вяжущих свойств. При просеивании цемента, через сито с сеткой № 008 должно проходить нежнее 85% массы пробы.
Ряд свойств цемента и прежде всего прочность в ранние сроки твердения, пропорциональны удельной поверхности, которая для заводских цементов равна 2500-3500 см2/г при определении ее по скорости прохождения воздуха через слой цементного порошка.
Истинная плотность портландцемента колеблется в диапазоне 3-3 2 г/см3. Насыпная плотность цемента зависит от степени уплотнения порошка: в рыхлом состоянии она составляет 960-1300, в уплотненном достигает 1600-840 кг/м3.
Цемент, затворенный водой, образует пластичное цементное тесто. Водопотребность цементов оценивают количеством воды затворения в процентах массы цемента, необходимым для образования теста нормальной густоты. Понятие нормальной густоты является условным и определяется погружением в цементное тесто пестика прибора Вика (пестик не должен доходить на 5-7 мм до пластинки, на которой установлено кольцо, заполненное цементным тестом). Портландцемент характеризуется сравнительно невысокой водопотребностью. Нормальная густота его колеблется от 24 до 29%. Увеличивают водопотребность цемента повышенное содержание алюминатов, минеральные добавки осадочного происхождения (опока, трепел, диатомит и др.), большая тонкость измельчения, снижают — добавки-пластификаторы. Повышение водопотребности неблагоприятно отражается на свойствах цемента: прочности, усадочных деформациях, морозостойкости и др. Это объясняется увеличением избытка воды по сравнению с теоретически необходимым для его твердения и, как следствие, возрастанием пористости цементного камня.
Первой стадией твердения цементного камня является схватывание. Весь период схватывания условно делится на начало и конец. Началом схватывания цементного теста считается время, пошедшее от момента затворения до того момента, когда игла прибора Вика не будет доходить до пластинки, на которой установлено кольцо, на 1 -2 мм. Концом схватывания считается время от начала затворения до момента, когда игла будет опускаться в тесто не более чем на 1 мм. Начало и конец схватывания цементов нормируются в пределах, удобных для изготовления растворов и бетонов. Начало схватывания Должно наступать не ранее чем через 60 мин, для цементов марок 300,400 и 500 и 45 мин для марок 550 и 600. Обычно оно наблюдается через 2-4 ч от момента затворения. Конец схватывания для цемента должен наступать не позднее 10 ч. Указанные требования обеспечивают за счет введения в портландцемент добавки гипса.
Двуводный гипс замедляет схватывание портландцемента. Замедляющее действие гипса связано с образованием на поверхности зерен С3А (наиболее быстротвердеющей фазы цемента) защитных оболочек нового соединения — гидросульфоалюмината. Это соединение является продуктом взаимодействия гипса, трехкальциевого алюмината и воды.
Добавки — регуляторы сроков схватывания цемента — разделяют на две группы: замедлители и ускорители. Замедлителями сроков схватывания портландцемента являются борная кислота, фосфаты и нитраты калия, натрия и аммония, которые увеличивают концентрацию ионов кальция в твердеющей системе, замедляющих процесс гидролиза С35. Замедляют схватывание цемента также органические поверхностно-активные вещества, адсорбирующиеся на частицах цемента и тормозящие гидратацию. Ускорить схватывание портландцемента можно введением добавок — электролитов, а также веществ, являющихся центрами кристаллизации гидратных новообразований.
Так, ускорение схватывания добавкой СаС12 объясняется ее взаимодействием с алюминатными и ферритными фазами цемента с образованием гидрохлоралюмината кальция, а также поверхностной адсорбцией ионов, которая вызывает повышение растворимости клинкерных минералов.
Равномерность изменения объема при стандартных испытаниях цемента оценивают визуально по деформации образцов — лепешек (диаметром 70-80 и толщиной 10 мм) из цементного теста нормальной густоты, подвергнутых кипячению после 24 ч твердения в нормальных влажностных условиях. Основной причиной неравномерного изменения объема цементного камня является гашение в нем свободных СаО и МдО (периклаза). В некоторых случаях такая неравномерность связана с образованием в уже затвердевшей структуре гидросульфоалюмината кальция при повышенной дозе добавки гипса. Основным показателем качества цемента является прочность, наибольшее значение имеет прочность при сжатии и изгибе. В зависимости от величины этих показателей установлены марки М300, М400, М500, М550, М600.
Цементный завод должен определять активность цемента и при пропаривании в возрасте 1 сут. и указывать ее в паспорте на отгружаемый цемент.
Для ориентировочного определения прочности цементов используются различные ускоренные методы.
Прочность цементов находится в сложной зависимости от большого комплекса факторов. Одним из основных является состав цемента. На прочностные показатели цемента влияют не только содержание отдельных минералов, но и их микроструктура. В последние годы большое внимание отводится изучению легирующих добавок, повышающих прочность цемента.
Прочность цемента, особенно в раннем возрасте, повышается с увеличением удельной поверхности и уменьшением предельного размера зерен. В высокопрочных быстротвердеющих цементах до 95% (по массе) представлено частицами не более 30 мкм при содержании зерен менее 5 мкм до 30%. Наряду с потенциальной активностью цемента, обусловленной его составом, структурой и дисперсностью, на прочность которую он проявляет в растворах и бетонах, существенно влияют условия хранения, использования и твердения.
Разновидности портландцементов.
Различные условия службы бетонов и растворов в разнообразных средах и конструкциях обусловили необходимость производства широкого ассортимента различных видов цемента на основе портландцементного клинкера. Большая часть всего объема выпускаемого цемента приходится на портландцемент с минеральными добавками. Использование различных минеральных добавок приводит к экономии наиболее дорогостоящего и энергоемкого полуфабриката — портландцементного клинкера — и утилизации различных промышленных отходов. Этот цемент более водостойкий и коррозионностойкий, чем бездобавочный, имеет меньшее тепловыделение. Для производства высокопрочных морозостойких бетонов и в ряде других случаев применяют бездобавочный портландцемент или портландцемент, содержащий до 5% минеральных добавок.
Все цементы, выпускаемые промышленностью, можно разделить на цементы общестроительного назначения и специальные цементы.
Цементы общестроительного назначения изготавливают пяти типов:
тип I — портландцемент (от 0 до 5% минеральных добавок) марок
300, 400, 500, 550, 600;
тип II_ портландцемент с добавками (от 6 до 35% минеральных добавок) марок 300, 400, 500;
тип III _ шлакопортландцемент (от 36 до 80% доменного гранулированного шлака) марок 300, 400, 500;
тип IV _ пуццолановый цемент (от 21 до 55% минеральных добавок) марок 300,400,500;
— тип V — композиционный цемент (от 36 до 80% минеральных добавок) марок 300, 400, 500.
При нормировании прочности в 2-х суточном возрасте цементы относятся к быстротвердеющим.
При условном обозначении указывают тип цемента и его марку. Вводят дополнительные обозначения для быстротвердеющего (Р), пластифицированного (Пл), гидрофобизированного цемента (Гф), а также цемента, полученного из клинкера с нормированным минералогическим составом (Н).
Портландцемент I типа содержит 95-100% клинкера без учета добавки гипса, вводимого для регулирования сроков схватывания. В цемент I типа так же, как и других типов, можно вводить до 5% дополнительных добавок (для интенсификации помола, ускорители твердения, пластификаторы, другие регуляторы свойств цемента). Цемент I типа используется в основном для бетонов с высокой морозостойкостью (при строительстве цементобетонных покрытий дорог, изготовлении железобетонных труб, шпал, опор, линий электропередач и др.).
Наиболее распространенными в строительстве являются портландцементы II типа. Их различают по виду добавки, указываемой при условном обозначении цемента: с добавкой шлака (Ш), пуццоланы (П), золы-уноса (3), известняка (И) и композиций добавок(К). Добавка известняка в отличие от активных минеральных добавок не взаимодействует с Са(ОН)2, но образует комплексные соединения гидрокарбоалюминаты и способствует кристаллизации гидратных «Ювообразований. Добавки пуццолан, в том числе и золы-уноса, а также известняка вводятся в портландцемент в количестве не более 0%. При этом содержание пуццолановых добавок осадочного происхождения не может превышать 10%.
Цементы II типа со шлаковой или композиционной добавкой Дополнительно подразделяют на группы А и Б. Портландцемент группы А содержит 6-20% добавок, группы Б — 21-35%. При введении в композицию добавок пуццоланы или известняка их количество не может превышать 20%.
Шлакопортландцементы (ШПЦ) и пуццолановые цементы (ППЦ) также изготавливают двух групп. В ШПЦ группы А вводят 35-65% доменного гранулированного шлака, группы Б-65-80%. Пуццолановые цементы группы А содержат 21-35% пуццолановой добавки, включая и золы-уноса, группы Б — 35-55%.
В композиционные цементы (тип V) наряду с другими возможными минеральными добавками обязательно вводится доменный гранулированный шлак. Цементы этого типа группы А содержат 36-60% композиции добавок, группы Б — 61-80%.
Добавка шлака в цементах группы А составляет 18-40%, группы Б — 41-60%.
При необходимости в цементы всех типов могут быть введены пластифицирующие и гидрофобизирующие поверхностно-активные вещества (ПАВ) в количестве не более 0,3% от массы цемента в пересчете на сухое вещество добавки.
Для интенсификации помола цемента разрешается вводить технологические добавки (каменный уголь, ПАВ), не ухудшающие качество цемента, в количестве не более 1%, в том числе органические — не более 0,15%. Ограничение предельного содержания таких добавок в цементе вызвано, как правило, их негативным влиянием на прочность при повышенных дозировках. Эффект влияния каменного угля как интенсификатора помола основан на его способности очищать мелющие тела мельниц и предупреждать агрегацию зерен цемента, добавок ПАВ — на т.н. «эффекте П.А. Ребиндера» способности адсорбироваться на микротрещинах материала при измельчении и уменьшать его прочность.
Тонкость помола цементов всех типов должна быть такой, чтобы при просеивании их через сито № 008 проходило не менее 85% массы. Для портландцемента с добавкой шлака, используемого в бетонах для аэродромных и дорожных покрытий, нормируется удельная поверхность, которая должна быть не менее 280 м2/кг. Содержание МgО в клинкере для всех типов цемента должно быть не более 5%. По специальному разрешению при условии обеспечения равномерности изменения объема образцов при их испытании в автоклаве содержание МgО может быть доведено до 5-6%. Нормируется также содержание в цементах SО3, вносимого, в основном, добавкой гипса. Для всех типов портландцемента минимальное содержание SО3 должно быть не менее 1%, максимальное для цементов I, II, IV и V типов марок 300,400,400Р и 500 не более 3,5%, марок 500Р, 550 и 600, а также всех марок цемента III типа-4%.
Вместе с сырьем в цемент могут попадать хлористые соли. Они оказывают коррозионное действие на арматуру в бетоне, на металлическое оборудование. Содержание хлоридов в цементах допускается не более 0,5 -1 % по массе, а в цементе, используемом для изготовления предварительно напряженных железобетонных конструкций, вообще не допускается. Ограничивается в количестве не более 0,6% также содержание щелочных оксидов в пересчете на Na2О в цементе, предназначенном для изготовления массивных тонных сооружений с использованием реакционно способных заполнителей.
К цементам, применяемым в бетонах при возведении дорожных и аэродромных покрытий, изготовления железобетонных труб, шпал, мостовых конструкций, стояков опор высоковольтных линий электропередач, предъявляют ряд дополнительных требований, обусловленных технологическими требованиями и необходимостью обеспечить проектные свойства бетона. С этой целью применяют типа или II с нормированным минералогическим составом марок 400 и 500. Из минеральных добавок допускается введение лишь доменного шлака в количестве не более 15%. Начало схватывания цемента для бетона дорожных и аэродромных покрытий устанавливается не ранее 2 ч, для труб — не ранее 2 ч 15 мин. По договоренности между потребителем и изготовителе цемента возможны и другие сроки схватывания.
Для производства бетона и в особенности сборных железо, бетонных элементов рациональным является применение быстротвердеющих и высокопрочных цементов, обеспечивающих ускоренный рост прочности изделий и снижение расхода вяжущего на 1 м3 бетона.
Важнейшим следствием применения быстротвердеющих (БТЦ) и высокопрочных цементов (ВПЦ) является сокращение цикла тепловой обработки и температуры пропаривания, а в ряде случаев и переход на беспропарочную технологию изготовления изделий. На основе высокопрочных цементов возможно изготовление высокопрочных бетонов, позволяющих уменьшить массу конструкций и расход арматуры, перейти на большепролетные тонкостенные конструкции.
К настоящему времени разработано четыре основных направления получения БТЦ и ВПЦ.
1. Последовательная оптимизация всех переделов производства цемента при строгой регламентации технологических
параметров.
2. Модифицирование состава клинкерных минералов, их легирование путем введения в сырьевую смесь специальных добавок.
3. Введение в цемент специальных кристаллизационных затравок.
4. Синтез смешанных цементов, каждый из компонентов которых упрочняет элементы структуры гидратационного твердения
остальных компонентов.
Первые опытные партии БТЦ были выпущены в 30-х годах XX столетия под руководством В.Н. Юнга и СМ. Рояка.
Для получения высокопрочных и быстротвердеющих цементов используют сырьевые смеси с максимальной реакционной способностью, зависящей от физико-химической природы сырьевых материалов, их химического состава и дисперсности. Повышенной реакционной способностью обладают «молодые» осадочные породы, материалы, имеющие стекловатую структуру, -золы, шлаки и т.п.
Сырьевая шихта должна иметь минимальное содержание вредных примесей. Зерна кварца должны быть сосредоточены во фракциях с размером менее 15 мкм. При просеивании пробы шихты на сите № 02 остаток должен быть практически нулевым, на сите №008-2-3%. Напрягающие цементы — разновидность расширяющихся.
Они имеют энергию расширения, достаточную для натяжения арматуры в железобетонных конструкциях. Их классифицируют на цементы с малой, средней и высокой энергией расширения. Напрягающие цементы выпускают как для условий тепловой обработки (НТЦ), так и для анормального твердения (НЦН).
Напрягающий портландцемент получают путем тонкого измельчения 65-70% портландцементного клинкера, 16-20%, высокоглиноземистого шлака и 14-16% гипса.
Начало схватывания наблюдается через 2-8 мин, конец — через 6-15 мин после затворения. Прочность образцов, твердеющих в воде в возрасте 1 сут, достигает 20-30 МПа, а при 28-суточном твердении — не менее 85 МПа. Затвердевшие образцы обладают полной водонепроницаемостью при давлении воды до 2,1 МПа.
Разработана технология напрягающего цемента на основе сульфоалюминатного клинкера, содержащего в качестве основного минерала сульфоалюминат кальция (4СаО-ЗА12О3-Са5О4). Такой клинкер получают обжигом каолина или золы ТЭС в смеси с известняком и гипсом.
Кроме рассмотренных выше цементов, на основе портландцементного клинкера изготавливают ряд других разновидностей — тампонажные, для асбестоцементных изделий и др.
Авторы: Л. И. Дворкин, О. Л. Дворкин

Также на сайте:

  • При помощи обращения в систему «М350» любой заказчик сможет купить бетон из Истры самовывозом имея объеме от 10 кубометров.
  • Все подробности про бетон класса в15 (стоимость, популярность, область использования и расположение отгружающих РБУ).
  • На каждую партию раствора Подольский бетонный завод выписывает паспорт качества.
  • Вы спрашиваете – мы отвечаем: как правильно заказать объем бетона — расчеты для наших заказчиков.
  • Все подробности про бетон м200 (цена за м3, популярность, область использования и карта заводов-изготовителей).
  • Благодаря обращению в нашу компанию каждый строитель способен купить пескобетон в Долгопрудном самовывозом в объеме от 10 кубов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *