Принцип работы солнечной батареи

Содержание

Принцип работы и устройство солнечной батареи

В профессиональных кругах панели, преобразующие солнечный свет в электроэнергию, называют фотоэлектрическими преобразователями, которые в разговорной речи или при написании понятных для широких масс статей принято называть солнечными батареями. Принцип работы этих устройств, первые рабочие экземпляры которых появились достаточно давно, на самом деле достаточно простой для понимания человеком, имеющим только знания со школьной скамьи.

Не секрет, что p-n переход может преобразовывать свет в электроэнергию. В школьных опытах нередко проводят эксперимент с транзистором со спиленной верхней крышкой, позволяющей свету падать на p-n переход. Подключив к нему вольтметр, можно зафиксировать, как при облучении светом такой транзистор выделяет мизерный электрический ток. А если увеличить площадь p-n перехода, что в таком случае произойдет? В ходе научных экспериментов прошлых лет, специалисты изготовили p-n переход с пластинами большой площади, вызвав тем самым появление на свет фотоэлектрических преобразователей, называемых солнечными батареями.

Принцип действия современных солнечных батарей сохранился, несмотря на многолетнюю историю их существования. Усовершенствованию подверглась лишь конструкция и материалы, используемые в производстве, благодаря которым производители постепенно увеличивают такой важный параметр, как коэффициент фотоэлектрического преобразования или КПД устройства. Стоит также сказать, что величина выходного тока и напряжения солнечной батареи напрямую зависит от уровня внешней освещенности, который воздействует на неё.

В структуре солнечной батареи используется p-n переход и пара электродов для снятия выходного напряжения

На картинке выше можно видеть, что верхний слой p-n перехода, который обладает избытком электронов, соединен с металлическими пластинами, выполняющими роль положительного электрода, пропускающими свет и придающими элементу дополнительную жесткость. Нижний слой в конструкции солнечной батареи имеет недостаток электронов и к нему приклеена сплошная металлическая пластина, выполняющая функцию отрицательного электрода.

Технология, по которой изготовлена солнечная батарея, влияет на её КПД

Считается, что в идеале солнечная батарея имеет близкий к 20 % КПД. Однако на практике и по данным специалистов сайта www.sun-battery.biz он примерно равен всего 10 %, при том, что для каких солнечных батарей больше, для каких то меньше. В основном это зависит от технологии, по которой выполнен p-n переход. Самыми ходовыми и имеющими наибольший процент КПД продолжают являться солнечные батареи, изготовленные на основе монокристалла или поликристалла кремния. Причем вторые из-за относительной дешевизны становятся все распространеннее. К какому типу конструкции солнечная батарея относится можно определить невооруженным глазом. Монокристаллические светопреобразователи имеют исключительно чёрно-серый цвет, а модели на основе поликристалла кремния выделяет синяя поверхность. Поликристаллические солнечные батареи, изготавливаемые методом литья, оказались более дешевыми в производстве. Однако и у поли- и монокристаллических пластин есть один недостаток — конструкции солнечных батарей на их основе не обладают гибкостью, которая в некоторых случаях не помешает.

Ситуация меняется с появлением в 1975 году солнечной батареи на основе аморфного кремния, активный элемент которых имеет толщину от 0,5 до 1 мкм, обеспечивая им гибкость. Толщина обычных кремниевых элементов достигает 300 мкм. Однако, несмотря на светопоглощаемость аморфного кремния, которая примерно в 20 раз выше, чем у обычного, эффективность солнечных батарей такого типа, а именно КПД не превышает 12 %. Для моно- и поликристаллических вариантов при всем этом он может достигать 17 % и 15 % соответственно.

Материал, из которого изготовлены пластины, влияет на характеристики солнечных батарей

Чистый кремний в производстве пластин для солнечных батарей практически не используется.

Солнечная батарея

Чаще всего в качестве примесей для изготовления пластины, вырабатывающей положительный заряд, используется бор, а для отрицательно заряженных пластин мышьяк. Кроме них при производстве солнечных батарей все чаще используются такие компоненты, как арсенид, галлий, медь, кадмий, теллурид, селен и другие. Благодаря ним солнечные батареи становятся менее чувствительными к перепадам окружающих температур.

Большинство солнечных батарей могут накапливать энергию, представляя собой системы

В современном мире отдельно от других устройств солнечные батареи используются все реже, чаще представляя собой так называемые системы. Учитывая, что фотоэлектрические элементы вырабатывают электрический ток только при прямом воздействии солнечных лучей или света, ночью или в пасмурный день они становятся практически бесполезными. С системами на солнечных батареях всё иначе. Они оборудованы аккумулятором, способным накапливать электрический ток днем, когда солнечная батарея его вырабатывает, а ночью, накопленный заряд может отдавать потребителям.

Солнечная система представляет собой совокупность солнечной батареи и аккумулятора

Для увеличения мощности, выходного напряжения и тока на основе солнечных батарей создаются панели, где отдельные элементы соединяются последовательно или параллельно.

Из чего делают солнечные батареи? Для тех, кому интересны способы замены привычных электростанций альтернативными источниками энергии, расскажем подробнее о механизме действия солнечных батарей, их составе и производительности.

Из чего же, из чего же, из чего же…?

В России к солнечным батареям многие люди до сих пор относятся с долей недоверия и даже с некоторой опаской.Между тем в развитых странах Европы и Америки число жителей, заменяющих привычные электростанции альтернативными источниками энергии, чтобы не зависеть от изменений цен на электроэнергию, растет день ото дня. Установка солнечной батареи изрядно опустошит ваш кошелек, но в долгосрочной перспективе затея многократно себя окупает.

Солнечная батарея представляет собой набор параллельно и последовательно соединенных полупроводников – фотоэлементов, преобразующих солнечную энергию в электричество. Фотоэлементы для солнечных батарей чаще всего производятся на основе кремниевых пластин, которые зарекомендовали себя среди пользователей долголетием и высоким КПД.

Срок службы такой пластины может достигать 30 лет, а потеря эффективности за весь срок эксплуатации составляют не более 20 %. Но и стоимость такой пластины в сравнении с конкурентами высока. Приобретение пленочных элементов на основе полимеров обойдется покупателю значительно дешевле, но заменить пришедший в негодность элемент придется быстрее.

Как работают солнечные батареи?

В таблице 1 представлена краткая сравнительная характеристика существующих элементов солнечных батарей.

Таблица 1. Сравнительная характеристика солнечных батарей

Вид батареи

КПД

Срок службы

Этапы производства

Отличительные черты

Кремниевые:

 

до 30 лет

  • Очистка сырья (кварца).
  • Выращивание кристаллов.
  • Формирование пластины.
  • Добавление доп. элементов.
  • Сборка готовой батареи.
  • технологически сложное производство;
  • высокая себестоимость выпуска;
  • возможно производство гибридов;
  • доступность сырья для производства;
  • экологичность

Монокристаллические

18–24%

Поликристаллические

12–18%

Аморфные

5-6%

Пленочные

 

до 18 лет

  • Подготовка пленки-основы.
  • Нанесение на пленку фотоэлемента.
  • Резка в размер.
  • крупные габариты готовой пластины;
  • низкая себестоимость;
  • гибкость и легкость элемента;;
  • экологичность.

основа – теллурид кадмия

10-12%

основа – селенид меди-индия

15-20%

основа – полимеры

5-6%

Солнечная батарея является основным звеном в процессе переработки солнечной энергии в электрическую. Для создания полноценного источника энергии одной солнечной батареи будет недостаточно, необходимо будет приобрести аккумулятор, инвертор, контроллеры. Прежде чем тратить немалые деньги на покупку и установку подобной системы, рекомендуем вам учесть следующие нюансы:

  • электрическая станция работает круглыми сутками, а солнечная батарея по ночам или в пасмурные дни оказывается не у дел;
  • некоторые фотоэлементы содержат опасные вещества;
  • пластины батареи могут перегреваться, необходим монтаж системы охлаждения.

Если говорить о положительных сторонах применения солнечных батарей, то следует отметить экологичность процесса, доступность сырья (солнечного света) и полную независимость владельца системы от динамики цен на электричество.

Теперь, зная о видах батарей, сроке их службы и отличительных особенностях, решить вопрос о выборе наилучшего варианта не составит для вас особого труда.

Устройство и принцип работы солнечной батареи: схема и комплектующие, история создания

Устройство солнечной батареи. Виды солнечных панелей

Состав и устройство солнечной батареи, ее элементов определяют эффективность выработки энергии готовым изделием. В настоящее время, для генерации электрической энергии используются солнечные панели на основе кремния (с-Si, mc-Si & кремниевые тонкопленочные батареи), теллурида кадмия CdTe, соединения медь-индий (галлий)-селен Cu(InGa)Se2, а также концентраторные батареи на основе арсенида галлия (GaAs). Ниже будут даны краткие описания каждой из них.

Солнечные батареи основе кремния

Солнечные батареи (СБ) на основе кремния составляют на сегодняшний день порядка 85% всех выпускаемых солнечных панелей. Исторически это обусловлено тем, что при производстве СБ на основе кремния использовался обширный технологический задел и инфраструктура микроэлектронной промышленности, основной «рабочей лошадкой» которой также является кремний. В результате, многие ключевые технологии микроэлектронной промышленности такие как выращивания кремния, нанесения покрытий, легирования, удалось адаптировать для производства кремниевых батарей с минимальными изменениями и инвестициями. Кроме того, кремний – один из самых распространенных элементов земной коры и составляет по разным данным 27-29% по массе. Таким образом, нет никаких физических ограничений для производства значительной доли электроэнергии Земли с имеющимися запасами Si.

Различают два основных типа кремниевых СБ – на основе монокристаллического кремния (crystalline-Si, c-Si) и на основе мультикристаллического (multicrystalline-Si, mc-Si) или поликристаллического. В первом случае используется высококачественный (и, соответственно, более дорогой) кремний выращенный по методу Чохральского, который является стандартным методом для получения кремниевых пластин-заготовок для производства микропроцессоров и микросхем. Эффективность СБ изготовленных из монокристаллического кремния составляет обычно 19-22%.

Солнечные батареи для дачи и дома: принцип работы и расчет необходимого количества

Не так давно, фирма Panasonic заявила о начале промышленного выпуска СБ с эффективностью 24,5% (что вплотную приближается к максимально возможному теоретически значению ~30%).

Во втором случае для производства СБ используется более дешевый кремний произведенный по методу направленной кристаллизации в тигле (block-cast), специально разработанного для производства СБ. Получаемые в результате кремниевые пластины состоят из множества мелких разнонаправленных кристаллитов (типичные размеры 1-10мм) разделенных границами зерен. Подобные неидеальности кристаллической структуры (дефекты) приводят к снижению эффективности – типичные значения эффективности СБ из mc-Si составляют 14-18%. Снижение эффективности данных СБ компенсируется их меньшей ценой, так что цена за один ватт произведенной электроэнергии оказывается примерно одинаковой для солнечных панелей как на основе c-Siтак и mc-Si.

Тонкопленочные солнечные панели

Возникает вопрос – зачем разрабатывать другие типы модулей, если солнечные панели на основе моно- и мультикристаллического кремния уже созданы и показывают неплохие результаты? Очевидный ответ — чтобы добиться еще большего снижения стоимости и улучшения технологичности и эффективности, по сравнению с обычными c-Si и mc-Siсолнечными батареями.

Дело в том, что обычные кремниевые фотоэлектрические модули наряду с преимуществами, перечисленными выше, обладают и рядом недостатков. Кемний из-за своих особых электрофизических свойств (непрямозонный полупроводник) обладает довольно низким коэффициентом поглощения, особенно в области инфракрасных длин волн. Таким образом, толщина кремниевой пластины для эффективного поглощения солнечного излучения должна составлять довольно внушительные 100-300 мкм. Более толстые пластины означают больший расход материала, что ведет к удорожанию СБ.

В то же время, прямозонные полупроводники на вроде GaAs, CdTe, Cu(InGa)Se2, и даже некоторые модифицированные формы Si, способны поглощать требуемое количество солнечной энергии при толщине всего в несколько микрон. Открывается заманчивая перспектива сэкономить на расходных материалах, а также на электроэнергии, которой требуется значительно меньше для изготовления более тонкого слоя полупроводника. Еще одной положительной чертой СБ на основе вышеназванных полупроводников – в отличие от СБ на основе c-Si и mc-Si– является их способность не снижать эффективность преобразования солнечной энергии в электрическую даже в условиях рассеянного излучения (облачный день или в тени).

Исследования СБ на основе теллурида кадмия (CdTe) начались еще в 1970х годах ввиду их потенциального использования в качестве перспективных для космических аппаратов. А первое широкое применение «на земле» подобные СБ нашли в качестве элементов питания карманных микрокалькуляторов.

Данные элементы представляют собой гетероструктуру из тонких слоев p-CdTe / n-CdS (суммарная толщина 2-8 мкм) напыленных на стеклянную подложку (основу). Эффективность современных фотоэлектрических элементов данного типа равняется 15-17%. Основным (и фактически единственным) производителем СБ на основе теллурида кадмия является американская фирма FirstSolar, которая занимает 4-5% всего рынка.

К сожалению, есть проблемы с обоими элементами входящими в состав соединения CdTe. Кадмий – это экологически вредный тяжелый метал, который требует особых методов обращения и ставит сложный вопросутилизации старых изделий. В виду этого, законодательство многих стран ограничивает свободную продажу гражданам СБ этого типа (строятся только масштабных солнечных электростанций под гарантии утилизации от фирмы производителя). Второй элемент – теллур, довольно редко встречается в земной коре. Уже в настоящее время более половины всего добываемого теллура идет на изготовление солнечных панелей, а перспективы нарастить добычу – довольно призрачны.

Солнечные батареи на основе соединения медь-индий (галлий)-селен Cu(InGa)Se2 (иногда обозначаются как CIGS) являются новичками на рынке солнечной энергетики. Несмотря на то, что начало исследований элементов этого типа было положено еще в середине 70х, в настоящее время коммерческий выпуск в боле-менее солидных масштабах ведет всего лишь фирма SolarFrontierKKиз Японии. Отчасти это связано с технически сложным и дорогим процессом изготовления, хотя в некоторых (удачных!) случаях их эффективность может достигать 20%.

Несмотря на отсутствие экологически вредных элементов в составе этого соединения, значительному расширению производства данных солнечных модулей в будущем угрожает дефицит индия. Ведутся исследования с целью заменить дорогой In на более дешевые элементы и может быть скоро появятся новые изделия на основе соединения Cu2ZnSn(S,Se)4.

Фотоэлектрические модули на основе аморфного кремния a-Si:H. Тонкопленочные солнечные батареи могут быть построены также и на основе хорошо известного кремния, если удастся каким-либо образом улучшить его способности к поглощению солнечного света. Применяются две основные методики:

— увеличить путь прохождения фотонов посредством многократного внутреннего переотражения;

— использовать аморфный кремний (a-Si), обладающий гораздо большим коэффициентом поглощения чем обычный кристаллический кремний (с-Si).

По первому пути пошла австралийская фирма CSGSolarLtd, разработавшая СБ с эффективностью 10-13% при толщине слоя кремния всего 1,5 мкм. По второму – швейцарская OerlikonSolar (которую сейчас перекупили японцы), создавшая комбинированные солнечные панели на основе слоев аморфного и кристаллического кремния a-Si / с-Si эффективность которых также составляет 11-13%. Своеобразной особенностью СБ из аморфного кремния является снижение эффективности их работы при понижении температуры окружающего воздуха (у всех остальных — наоборот). Так, фирма производитель рекомендует устанавливать данные модули в странах с жарким климатом.

Концентраторные солнечные модули

Наиболее совершенные и самые дорогие на сегодняшний день солнечные модули обладают эффективностью фотоэлектрического преобразования до 44%. Они представляют собой многослойные структуры из разных полупроводников последовательно выращенных друг на друге слой за слоем. Наиболее успешной является структура состоящая из трех слоев:  Ge (нижний полупроводник и подложка), GaAsи GaInP. Благодаря тому, что в подобной комбинации каждый отдельный полупроводниковый слой поглощает наиболее эффективно свой определенный диапазон солнечного спектра (определяемый шириной запрещенной зоны полупроводника), достигается наиболее полное поглощение солнечного света во всем диапазоне длин волн, недостижимое для СБ состоящих из одного типа полупроводника. К сожалению, процесс изготовления подобных многослойных полупроводниковых слоев очень сложен технически и, как следствие, весьма дорог.

Если солнечные батареи стоят очень дорого, фокусировка солнечного излучения на меньшей площади СБ может применяться как эффективный способ снижения финансовых затрат. Например, собрав при помощи линзы солнечный свет с 10 см2 и сфокусировав его на 1 см2 солнечной батареи, можно получить тоже количество электроэнергии, что и от элемента площадью 10 см2 без концентратора, но экономя при этом целых 90% площади! Но при этом, набор подобных ячеек (солнечная батарея + линза) должен быть смонтирован на подвижной механической системе, которая будет ориентировать оптику в направлении солнца в то время как оно движется по небу в течении дня, что увеличивает стоимость системы.

В настоящее время экономически оправдано использовать подобные дорогие концентраторные солнечные модули только в тех странах и регионах земного шара, где круглый год имеется в достатке прямое солнечное излучение (рассеянное излучение не может быть сфокусировано линзой). Так, французская фирма-производитель концентраторных СБ SOITEC устанавливает свои СБ в Калифорнии, ЮАР, на юге Франции (Прованс), в Испании.

Органические солнечные батареи и модули фотосенсибилизованные красителем

Но есть и новый тип тонкопленочных солнечных батарей, такой как сенсибилизированные красителем солнечные элементы, которые работают на совершенно ином принципе, чем все модули рассмотренные выше, на принципе больше напоминающем фотосинтез у растений. Но их пока нет в коммерческой продаже.

Трушин М.В. Ph.D

В последние годы так называемая «альтернативная энергетика» пользуется все большей популярностью. Особое же внимание уделяется использованию излучения солнца. Это вполне закономерно, ведь если создать элемент, который способен преобразовать световые лучи в электричество, можно получить бесплатный неиссякаемый энергоисточник. И такой элемент был создан. Он был назван «солнечным фотоэлементом» или «солнечной батареей», причем как работает солнечная батарея, разобраться довольно просто.

Принцип действия

Главное – не путать фотобатареи с солнечными коллекторами (и те, и другие часто именуют «солнечными панелями»). Если принцип действия коллекторов основан на нагревании теплоносителя, то фотоячейки производят непосредственно электричество. В основе их работы – фотоэлектрический эффект, заключающийся в генерации тока под воздействием солнечных лучей в полупроводниковых материалах.

Полупроводниками же называют вещества, атомы которых либо содержат избыточное количество электронов (n-тип), либо наоборот, испытывают их недостаток (p-тип). А те области структуры p-элементов, где потенциально могли бы находиться электроны, получили название «дырок». Соответственно, фотоэлемент на основе полупроводников состоит из двух слоев с разными типами проводимости.

Как работают солнечные батареи с такой структурой? Следующим образом. Внутренний слой элемента выполняется из p-полупроводника, внешний, гораздо более тонкий, — из n-полупроводника. На границе слоев возникает так называемая «зона p-n перехода», образовавшаяся за счет формирования объемных положительных зарядов в n-слое и отрицательных – в p-слое.

При этом в зоне перехода возникает определенный энергетический барьер, вызванный разностью потенциалов зарядов.

Принцип работы и устройство солнечной батареи

Он препятствует проникновению основных носителей электрозаряда, но свободно пропускает неосновные, причем в противоположных направлениях. Под действием же солнечного света часть фотонов поглощается поверхностью элемента и генерирует дополнительные «дырочно-электронные» пары. То есть электроны и дырки перемещаются из одного полупроводника в другой, передавая им дополнительный отрицательный или положительный заряд. При этом первоначальная разность потенциалов между n- и p-слоем снижается, а во внешней цепи генерируется электроток.

Особенности структуры

Многие современные фотоячейки имеют только один p-n переход. При этом свободно переходящие носители заряда генерируются лишь теми фотонами, энергия которых либо больше, либо равна ширине «запрещенной зоны» на границе перехода. Это означает, что фотоны с более малым запасом энергии попросту не используются, что в свою очередь заметно снижает эффективность ячейки. Для преодоления этого ограничения были созданы многослойные (чаще – четырехслойные) фотоструктуры.

Они позволяют использовать значительно большую часть солнечного спектра и обладают более высокой производительностью. Причем располагают фотоэлементы таким образом, чтобы лучи попадали сначала на переход с самой широкой запрещенной зоной. При этом поглощаются более «энергоемкие» фотоны, фотоны же с меньшим запасом энергии проходят глубже и стимулируют остальные элементы.

А какие бывают солнечные батареи?

Солнечные элементы, принцип работы которых основан на фотоэффекте, создаются уже давно. Главная трудность при их производстве заключается в подборе материалов, способных генерировать достаточно мощный ток. Первые опыты проводились с селеновыми ячейками, но их эффективность была крайне мала (около 1%). Сейчас в фотоэлементах используется в основном кремний, производительность таких устройств составляет порядка 22%. Кроме того, постоянно разрабатываются новые образцы ячеек (например, с использованием арсенида галлия или индия), имеющих более высокий КПД. Максимальная же эффективность солнечных батарей на сегодняшний день составляет 44,7%.

Но такие элементы очень дороги и пока что производятся только в лабораторных условиях. Широкое же распространение получили ячейки на базе монокристаллического или поликристаллического кремния, а также тонкопленочные элементы. Фотобатареи на монокристаллах стоят дороже, но имеют большую производительность, поликристаллы же более дешевы, но из-за неоднородной структуры менее эффективны. При производстве же тонкопленочных ячеек применяются не кристаллы, а напыленные на гибкую подложку кремниевые слои.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *