Термометр манометрический

Принцип действия манометрических термометров основан на изменении давления газа, жидкости или насыщенного пара в замкнутом объеме в зависимости от температуры. Эти термометры широко применяются во взрывоопасных производствах и выпускаются такими фирмами как «Орлекс» (г. Орел), ОАО «МаноТомь» (г. Томск), Wika, Jumo (Germany) и др. Конструктивно термометр состоит из термобаллона 1, погружаемого в контролируемую среду, манометра 3 для измерения давления и соединяющего их капилляра 2 (рис. 1). Такие термометры используются для измерения температур от -200 до 600 °С и выпускаются следующих разновидностей.

Рис. 1. Схема манометрического термометра:

1 — термобаллон; 2 — капилляр; 3 — манометр

Газовые манометрические термометры применяются для измерения температур в интервале от -200 до 600 °С. Нижний предел измерения выбирается из интервала от -200 до 200 °С, верхний — из интервала от 50 до 600 °С, диапазон измерения находится в интервале от 100 до 700 °С. В качестве наполнителя используется гелий (при низких температурах), азот (при средних температурах) или аргон (при высоких температурах).

Реальное уравнение шкалы несколько отличается от линейного, однако это отклонение незначительно и можно считать, что шкалы газовых манометрических термометров являются равномерными.

Изменение температуры окружающего воздуха влияет на расширение рабочего вещества в капилляре и манометрической пружине, что вызывает изменение давления в термосистеме и соответствующее изменение показаний термометра. Для уменьшения этого влияния уменьшают отношение внутреннего объема пружины и капилляра к объему термобаллона, для чего увеличивают длину термобаллона и его диаметр.

Класс точности газовых термометров 1 или 1,5. Они могут выпускаться показывающими или самопишущими, могут снабжаться дополнительными устройствами.

Конденсационные манометрические термометры используются для измерения температур в интервале от -25 до 300 °С. Нижний предел измерения выбирается из интервала от -25 до 100 °С, верхний — из интервала от 35 до 300 °С, диапазон измерения колеблется в пределах от 50 до 150 °С. Термобаллон термометра примерно на 3/4 заполнен жидкостью с низкой температурой кипения, а остальная часть заполнена насыщенным паром этой жидкости. Капилляр и манометрическая пружина также заполнены жидкостью. Количество жидкости в термобаллоне должно быть таким, чтобы при максимальной температуре не вся жидкость переходила в пар. В качестве термометрических жидкостей используется фреон-22 (при низких температурах), метил хлористый, этил хлористый, ацетон, толуол, спирт (в порядке возрастания пределов измерения). Давление в термосистеме конденсационного манометрического термометра будет равно давлению насыщенного пара рабочей жидкости, определяемого, в свою очередь, температурой, при которой находится рабочая жидкость, т.е. температурой измеряемой среды с помещенным в нее термобаллоном. Эта зависимость давления насыщения пара от температуры имеет нелинейный вид, она однозначна, когда измеряемая температура не превышает критическую.

В связи с тем, что давление в термосистеме зависит только от измеряемой температуры, на показания термометра не будет оказывать влияние температура окружающей среды. Имеет место гидростатическая погрешность, вызываемая разностью высот расположения термобаллона и измерительного прибора. Для уменьшения этой погрешности длина капилляра не должна превышать 25 м. Барометрическая погрешность у конденсационных манометрических термометров может иметь место на начальном участке шкалы, когда давление в термосистеме невелико. В остальных случаях влияние барометрического давления будет пренебрежимо мало.

Конденсационные термометры выпускаются показывающими, дополнительно они могут оснащаться электроконтактными устройствами. Класс термометров 1 или 1,5.

Жидкостные манометрические термометры находят небольшое распространение. Они используются для измерения температур в интервале от -50 до 300 °С. Нижний предел измерения выбирается из интервала от -50 до 100 °С, верхний — из интервала от 50 до 300 °С, диапазон измерения колеблется в пределах от 50 до 300 °С. В качестве термометрических жидкостей используется жидкость ПМС-5 при низких температурах, при высоких — жидкость ПМС-10. Рабочее вещество жидкостных манометрических термометров практически несжимаемо. Поэтому изменение объема рабочей жидкости в термобаллоне при изменении температуры соответственно диапазону измерения вызовет такое увеличение давления в термосистеме, при котором манометрическая пружина изменит свой внутренний объем соответственно изменению объема жидкости. При этом давление зависит от жесткости пружины и для различных манометрических пружин может быть различным.

В жидкостных манометрических термометрах погрешность, вызванная изменением барометрического давления, как правило, отсутствует, так как давление в системе значительно. Погрешность, вызываемая изменением температуры окружающей среды, имеет место и в жидкостных манометрических термометрах. Для ее уменьшения применяют различные способы температурной компенсации.

В жидкостных манометрических термометрах может иметь место гидростатическая погрешность, возникающая при различных уровнях расположения термобаллона и измерительного прибора. Для снижения возможных гидростатических погрешностей длину капилляра уменьшают до 10м. Жидкостные термометры выпускаются показывающими класса 1 или 1,5.

Манометрические термометры могут работать в условиях вибрации, а также во взрывоопасных и пожароопасных помещениях. Источники погрешностей термометров: изменение барометрического давления и температуры окружающей среды, характер взаимного расположения термобаллона и манометра. В табл. 1 приведены некоторые технические характеристики показывающих манометрических термометров ТГП-100М1 (газовые), ТКП-100М1 (конденсационные), ТЖП-100 (жидкостные). Для термометров ТКП-100М1 предельная основная погрешность устанавливается для последних двух третей температурной шкалы, а на первой трети не регламентируется.

Таблица 1

Технические характеристики манометрических термометров

Обозначение

Тип

Интервал применения °С

Класс

Диаметр термобаллона, мм

Длина термобаллона, мм

Глубина погружения термобаллона, мм

Длина капилляра, м

ТГП-100М1

Газовый

1 или 1,5

20 или 30

125 250 400

От 160 до 500

От 1,6 до 60

ТКП-100М1

Конденсационный

1 или 1,5

От 125 до 400

От 1,6 до 25

ТЖП-100

Жидкостной

1 или 1,5

34 42 56 100

От 80 до 400

От 1,6 до 10

Для термометров с регламентированной погрешностью для первой трети устанавливается последующий низкий класс точности. Вариация показаний не превышает абсолютного значения предельной основной погрешности.

Биметаллические термометры. Принцип их действия основан на том, что полоска из двух свальцованных друг с другом пластин из металлов с различными коэффициентами расширения (биметалл), искривляется при изменении температуры.

Искривление находится в приблизительной пропорции с температурой. Биметаллическая пластина легла в основу двух различных измерительных элементов:

• винтовая пружина,

• спиральная пружина.

Рис. 2. Схема биметаллического термометра с винтовой пружиной

В результате механической деформации биметаллических пластин при изменении температуры в указанных элементах возникает вращательное движение. Если внешний конец биметаллической измерительной системы жестко закреплен, то другой конец без промежуточного элемента проворачивает вал указательной стрелки. Диапазоны показаний лежат между -70 и 600 °С при измерениях с классом точности 1 или 2,5. Условное изображение термометра с винтовой пружиной приведено на рис. 2. Биметаллические термометры являются наиболее простыми измерителями температуры. Они выпускаются НПО «Юмас» (Москва), ЗАО «Орлэкс» (г. Орел),ф. Wika (Germany) и др.

Манометрические термометры предназначены для непрерывного местного и дистанционного измерения температуры жидких и газообразных нейтральных к материалу измерительного термобаллона сред в стационарных условиях.

Принцип действия манометрических термометров основан на измерении давления (объема) рабочего вещества в замкнутом объеме в зависимости от температуры чувствительного элемента.

Конструктивно термометр состоит из термобаллона (чувствительного элемента), капилляра и деформационного манометрического преобразователя, связанный со стрелкой прибора.

Рисунок 1: 1.Термобаллон; 2.Капиллярная трубка; 3.Манометрическая пружина; 4.Тяга; 5.Секторный механизм; 6.Стрелка; 7.Шкала

Термобаллон 1 помещают в зону контролируемой температуры. При измерении температуры объекта изменяется объем рабочего вещества в замкнутой системе прибора. Это приводит к изменению давления, действующего на манометрическую пружину 3, которая деформируясь, перемещает с помощью тяги 4 и сектор 5 стрелку 6 относительно шкалы 7.

В зависимости от вещества, заполняющего термосистему, манометрические термометры делятся на газовые (ТГП) и парожидкостные или конденсационные (ТКП). Газовые в качестве наполнителя используют в основном азот, а конденсационные – ацетон, метил хлористый, фреон.

Классификация манометрических термометров

В зависимости от выполняемых функций манометрические термометры разделяются на показывающие рис.2; сигнализирующие (электроконтактные) рис.3; самопишущие рис.4; взрывозащищенные рис.5.

Рис 2. Термометр манометрический показывающий Рис 3. Термометр манометрический электроконтактный

Рис 4. Термометр манометрический самопишущий Рис.5 Термометр манометрический взрывозащищенный

Достоинства и недостатки манометрических термометров

К достоинству манометрических термометров можно отнести: возможность измерения температуры без использования источников питания; простота конструкции; виброустойчивость; взрывобезопасность; нечувствительность к внешним магнитным полям и доступная цена.

К недостаткам можно отнести: относительно невысокая точность измерения; трудность ремонта при разгерметизации измерительной системы; низкая прочность капилляра и небольшое расстояние дистанционной передачи показаний; значительная инертность.

Манометрические термометры

Термометр манометрический — прибор для измерения температуры, действие которого основано на зависимости давления рабочего вещества в замкнутом объеме от температуры. В зависимости от рабочего вещества различают газовые, жидкостные и конденсационные термометры.

Конструктивно манометрические термометры представляют собой герметичную систему, состоящую из баллона, соединённого капилляром с манометром. Термобаллон погружается в измеряемую среду. При изменении температуры рабочего вещества в термобалоне происходит изменение давления во всей замкнутой системе, которое через капиллярную трубку передается на манометр. В зависимости от назначения манометрические термометры бывают показывающими, самопишущими, а также состоящими только из первичного преобразователя давления для дистанционной передачи сигнала. Часто к манометрическим термометрам подключают устройства управления и сигнализации.

Капилляр манометрического термометра обычно представляет собой латунную трубку с внутренним диаметром в доли миллиметра. Это позволяет удалить манометр от места установки термобаллона на расстояние до 60 м. Манометрические термометры могут применяться во взрывоопасных помещениях. При необходимости передачи результатов измерений на большое расстояние манометрические термометры снабжают промежуточными преобразователями с унифицированными выходными пневматическими или электрическими сигналами. Наиболее уязвимыми в конструкции манометрических термометров являются места присоёдинения капилляра к термобаллону и манометру. Поэтому устанавливать и обслуживать такие приборы должны специально обученные специалисты. Нельзя нагревать манометрический термометр выше предельной температуры, на которую он рассчитан.

Диапазон измерений манометрического термометра зависит от типа термометра и рабочего вещества. Диапазон должен быть установлен в ТУ на термометры конкретного типа.

Газовые манометрические термометры заполняются азотом или гелием. Диапазон измерения температур может составлять от -200 до +800°С (ГОСТ 16920-93). Шкала равномерная. На показания газовых манометрических термометров оказывает влияние температура капиллярной трубки, если она отличается от температуры термобаллона. Для уменьшения, этой погрешности термометрический баллон имеет объем, во много раз превышающий объем капиллярной трубки. Устранение погрешности достигается применением специальных компенсирующих устройств.
Жидкостные манометрические термометры заполняются ртутью, толуолом, ксилолом, метиловым или пропиловым спиртом. Диапазон измерения температур для жидкостных термометров составляет от -150 до 400 °С. Благодаря большой теплопроводности жидкости, такие термометры менее инерционны по сравнению с газовыми. Шкалы ртутных и спиртовых термометров равномерные, шкала термометра, заполненного ксилолом, не равномерная в диапазоне температур выше 120 °С.
Принцип работы конденсационных манометрических термометров основан на зависимости давления насыщенного пара от температуры. В конденсационных манометрических термометрах применяются легкокипящие жидкости пропан, хлористый этил, этиловый эфир, ацетон, бензол и т.д. Конденсационные манометрические термометры обладают высокой чувствительностью. Шкалы термометров не равномерны в связи с нелинейной зависимостью давления насыщенного пара от температуры. Диапазон измерения температур составляет от -50 до +300 °С.

Особенностью манометрических термометров является довольно большая тепловая инерционность. Показатель тепловой инерции в неподвижной газовой среде составляет 500-800 с, в жидкой среде 15-30 с. Инерционность зависит от размера баллона и его заполнения.

Классы точности манометрических термометров по ГОСТ 16920-93 «Термометры и преобразователи температуры манометрические. Общие технические требования и методы испытаний» выбирают из ряда 0,4; 0,5; 0,6; 1,0; 1,5; 2,5, что соответствует пределу допускаемой основной погрешности в процентах от диапазона измерений. Вариация показаний (изменение показаний при увеличении и снижении температуры) не должна превышать предел допускаемой основной погрешности. Шкалы манометрических термометров градуируются по ГОСТ 25741-83 «Циферблаты и шкалы манометрических термометров. Технические требования и маркировка».

Поверка манометрических термометров осуществляется аккредитованными лабораториями по ГОСТ 8.305-78 «ГСИ. Термометры манометрические. Методы и средства поверки». Поверка проводится в термостатах методом сличения с эталонным термометром. Одной из наиболее сложных проблем поверки манометрических термометров является необходимость обеспечения однородной температуры в термостате на всей длине термобаллона. На термометры специального назначения, увеличенной длины, оригинальной конструкции или области применения могут быть разработаны индивидуальные методы поверки и технические требования.

Стандарты на манометрические термометры публикуются в разделе «Российские и межгосударственные стандарты».

Перейти в раздел «Контактные датчики температуры основных типов» >>>

Перейти в раздел «Контактные датчики других типов»>>>

Перейти в раздел «Поверка и калибровка» >>>

Ремонт манометрических термометров
Категория: Приборы для измерения температуры
Ремонт манометрических термометров

При поступлении манометрических термометров в ремонт в результате внешнего осмотра выявляют имеющиеся дефекты, для чего прибор может быть подвергнут частичной или полной разборке. Частичную разборку выполняют главным образом для регулировки. Она сводится к вскрытию корпуса прибора для доступа к регулируемым деталям.

Полную разборку производят для чистки механизма, замены или ремонта поврежденных деталей при замене термосистемы или ее перезаполнении. У манометрических термометров обычно ремонтируют, проверяют и регулируют следующие узлы: чувствительный элемент, передаточный механизм, корпус, контактное устройство для сигнализации, привод диаграммы (у самопишущих), сильфон обратной связи и усилитель (при пневматической передаче показаний), узел датчика (при электрической передаче показаний).

Неисправности корпуса, стекла, крышки, циферблата и стрелки, обнаруженные при осмотре устраняют в процессе ремонта. В случае утечки заполнителя после обнаружения места утечки и его ремонта осуществляют перезаполнение термосистемы. Для обнаружения места повреждения подготавливают установку для заполнения термосистемы газом. Затем отрезают расклепанный конец капиллярного отростка и впаивают его открытый конец в переходную втулку. Термобаллон и капилляр опускают в сосуд с водой, а трубчатую пружину во избежание коррозии — в сосуд с бензином. Защитную оболочку капилляра сдвигают в сторону. Открыв баллон с азотом и управляя редуктором с помощью манометра, создают в системе давление 2 — 3 МПа. Место повреждения определяют по пузырькам газа, поднимающимся на поверхность жидкости. Поврежденный участок капилляра облуживают, обвертывают листовой медью и запаивают оловом. Если отверстие находится на термобаллоне, его также запаивают, а поврежденную трубчатую пружину 6 заменяют новой, так как пайка пружины нарушает линейность характеристики и, следовательно, равномерность шкалы.

Рис. 1. Схема установки для заполнения термосистем газом ляет собой приращение давления в замкнутой системе при изменении значения температуры от начала до конца шкалы.

После исправления повреждения термосистему заново проверяют на герметичность. Исправную систему заполняют азотом до определенного давления, значение которого зависит от интервала шкалы термометра и характеристики пружины.

Если при перекрытом редукторе манометр не показывает уменьшения давления, система заполнена. По окончании заполнения термосистемы капиллярный отросток расклепывают молотком около втулки, откусывают кусачками лишнее, проверяют в сосуде с бензином на плотность, убедившись, что через отросток утечки нет, пропаивают его конец оловом. Отремонтированную систему вставляют в прибор.

Ремонт передаточных механизмов состоит в разборке, чистке, устранении неисправностей деталей или замене их новыми. Секторный передаточный механизм вынимают из корпуса. Детали разобранного механизма промывают в чистом бензине и протирают мягкой тряпкой. Дефекты деталей передаточного механизма устанавливают внешним осмотром. Выпрямление сектора и пластинок производят на металлической плите легкими ударами деревянного молотка.

Трибку проверяют на часовом станке. При обнаружении искривления оси или неправильной формы цапфы изготовляют новую ось или перетачивают цапфу. Погнутую ось трибки можно исправить, катая ее гладилкой по ровной металлической поверхности.

Участок сектора с изношенными зубцами вырезается в форме «ласточкина хвоста”, в вырезанную часть вставляют пластину из листовой латуни и пропаивают ее оловом. Затем место пайки зачищают и производят разметку и нарезку новых зубцов. После этого сектор и трибку устанавливают на место и проверяют их сцепление по краям и в середине. Негодные шпильки заменяют новыми, изготовленными из рояльной проволоки. При сборке секторного передаточного механизма следует обеспечить параллельность осей сектора и трибки, плотный прижим верхней пластины винтами к стойкам, плавное сцепление и перемещение сектора с трибкой.

После установки спиральной пружины, собранный передаточный механизм смазывают часовым маслом и устанавливают на место. Незначительные дефекты деталей рычажных передаточных механизмов устраняют в зависимости от их характера. При значительных повреждениях, детали заменяют новыми.

В манометрические термометры с пневматическим выходным сигналом встроены пневматические преобразователи. Общими узлами для пневматических преобразователей являются: управляющий элемент типа сопла-заслонки; передаточный механизм, состоящий из рычагов, тяг и пружин; обратная связь – одновитковая трубчатая пружина; усилительное пневматическое реле.

Неисправность управляющего элемента типа сопла-заслонки проявляется чаще всего в увеличении зазора в местах их соприкосновения, в результате чего происходит пропускание воздуха в атмосферу. Увеличение зазора может произойти в результате искривления заслонки, загрязнения и покрытия ржавчиной ее поверхности и торцовой поверхности сопла, загрязнения сопла. Кроме этого может произойти нарушение герметичности соединительных трубок и штуцерных соединений, в результате чего давление сжатого воздуха на выходе прибора не соответствует измеряемой величине. При ремонте управляющего элемента выравнивают поверхность заслонки, удаляют загрязнения и ржавчину, очищают поверхность сопла и тщательно притирают на матовом стекле его торец пастой ГОИ. В пневматическом реле возможны следующие неисправности: засорение дросселя, неточная установка последнего, неправильное расположение шарика клапана относительно седла. Засорение дросселя устраняют следующим образом. Выворачивают дроссельный винт и капиллярную трубку дросселя прочищают иглой. После этого дроссельный винт ставится на место. Неточная установка постоянного дросселя может вызвать при нулевом входном сигнале максимальный выходной сигнал или независимо от величины входного сигнала минимальный сигнал на выходе. Это происходит в результате отвертывания дросселя; неисправность устраняют ввертыванием дросселя до отказа.

Реклама:

Читать далее:

Ремонт пирометрических милливольтметров и логометров

Действие манометрических термометров основано на использовании зависимости между температурой и давлением рабочего (термометрического) вещества в замкнутой герметичной термосистеме. Манометрические термометры являются техническими приборами и в зависимости от рабочего вещества термосистемы они подразделяются на газовые, жидкостные и конденсационные (парожидкостные).

Термосистема термометра состоит из термобалона 1, погружаемого в среду, температура которой измеряется, капилляра 2 и манометрической пружины 3. Один конец пружины впаян в держатель, канал которго соединяет внутреннюю полость манометрической пружины через капилляр с термобаллоном. Второй свободный конец пружины герметизирован и шарнирно связан с секторным передаточным механизмом, на оси которого насажена указательная стрелка. Термосистема термометра заполнена рабочим веществом, например, газом (или жидкостью), под некоторым начальным давлением. При нагревании термобаллона увеличивается давление газа в замкнутой герметизированной термосистеме, в результате чего пружина деформируется (раскручивается) и ее свободный конец перемещается. Движение свободного конца пружины преобразуется в перемещение указателя относительно шкалы прибора, по которой производят отсчет температуры.

Манометрические газовые термометры (МГТ). МГТ позволяют измерять термературу от -150 до +600 оС. Рабочее вещество – азот. Длина соединительного капилляра 0,6 — 60 м. При постоянном объеме газа зависимость его давления от температуры определяется выражением

, (1.1)

где — давление газа при t=0 ;

— термический коэффициент давления газа, .

Ввиду больших размеров термобаллона (диаметр – 20 мм, длина – 125 мм – 500 мм) газовые термометры не везде могут быть применены.

Манометрические конденсационные термометры (МКТ). Термобаллон МКТ частично заполнен конденсатом (примерно на 0,7-0,75 объема), а в верхней части термобаллона над конденсатом находится насыщенный пар этой жидкости. Манометрическая пружина и капилляр термометра заполнены тем же конденсатом, что и термобаллон.

МКТ выпускаются с пределами измерения от -50 оС до 300 оС. В качестве конденсата используется фреон-22 с пределами измерения от -25 до 80 оС, пропилен с пределами измерения от -50 оС до 60 оС, хлористый метил с пределами измерения от 0 до 125 оС, ацетон с пределами измерения от +100 до 200 оС, этиленбензол с пределами измерения от +160 до 300 оС и т.п.

Давление в термосистеме МКТ равно давлению насыщенного пара в термобаллоне. При этом зависимость между давлением насыщенного пара и температурой является вполне определенной, однозначной и известной для конденсата, которым заполенена термосистема термометра. Однако однозначная зависимость давления насыщенного пара от температуры имеет место только до определенной температуры, называемой критической.

Жидкостные манометрические термометры (МЖТ). Для заполнения термосистемы МЖТ применяют пропиловый алкоголь, метансилол, силиконовые жидкости и т.п. МЖТ позволяют измерять температуру от -150 до +300 оС. Они выпускаются с различными диапазонами измерения температуры в указанном интервале. Шкала МЖТ получается практически равномерной.

Жидкости, применяемые в качестве заполнителей, практически несжимаемы. В термометрах этого типа объем термобаллона для данной рабочей жидкости должен быть согласован с диапазоном измерения прибора, с изменением объема внутренней полости манометрической пружины при рабочем ходе свободного конца ее, а вместе с тем и с изменением давлением в термосистеме.

При нагреве термобаллона от до жидкость расширяется, а термобаллон увеличивает свой объем. Чем больше диапазон измерения МЖТ, тем меньше должен быть внутренний объем термобаллона при одинаковых прочих условиях. Например, для МЖТ с диапазоном измерения 40-80 оС длина корпуса термобаллона равна 110 мм, а с диапазоном 60-310 оС длина равна 18 мм. Диаметр термобаллона в обоих случаях равен 12 мм.

Основные метрологические характеристики манометрических термометров. Манометрические термометры (МТ) рассчитаны на работу при температуре окружающего воздуха от 5 до 50 оС и относительной влажности до 80%. МТ изготавливаются следующих классов точности: 1,0; 1,5; 2,5; и 4.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *